(2013•大興區(qū)一模)設(shè)(1-x)(1+2x)5=a0+a1x+a2x2+…+a6x6,則a2=
30
30
分析:要求a2,只要求解展開(kāi)式中的含x2項(xiàng)的系數(shù),根據(jù)題意只要先求出(1+2x)5的通項(xiàng),即可求解
解答:解∵(1-x)(1+2x)5=a0+a1x+a2x2+…+a6x6,
而(1+2x)5展開(kāi)式的通項(xiàng)為Tr+1=2r
C
r
5
xr

∴(1-x)(1+2x)5=展開(kāi)式中含x2的項(xiàng)為22
C
2
5
x2-x•
2C
1
5
x
=30x2
∴a2=30
故答案為:30
點(diǎn)評(píng):本題主要考查了二項(xiàng)展開(kāi)式的通項(xiàng)在求解指定項(xiàng)中的應(yīng)用,解題的關(guān)鍵是尋求指定項(xiàng)得到的途徑
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大興區(qū)一模)若集合M={y|y=2-x},P={y|y=
x-1
},則M∩P=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大興區(qū)一模)復(fù)數(shù)(1+i)2的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大興區(qū)一模)已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的離心率為
3
2
,實(shí)軸長(zhǎng)為4,則雙曲線的方程是
x2
4
-
y2
5 
=1
x2
4
-
y2
5 
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•大興區(qū)一模)執(zhí)行如圖所示的程序框圖.若n=5,則輸出s的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案