(本小題滿分13分)如圖6,正方形所在平面與圓所在平面相交于,
線段為圓的弦,垂直于圓所在平面,
垂足是圓上異于、的點(diǎn),
,圓的直徑為9.
(1)求證:平面平面
(2)求二面角的平面角的正切值.

(1)略
(2)
(1)證明:∵垂直于圓所在平面,在圓所在平面上,∴

在正方形中,,
,∴平面.∵平面,
∴平面平面. …………4分
(2)解法1:∵平面,平面,


過點(diǎn)于點(diǎn),作于點(diǎn),連結(jié),
由于平面平面,
.∵,∴平面
平面,∴
,∴平面
平面,∴
是二面角的平面角.
中,,,,
,∴
中,,
.故二面角的平面角的正切值為. …………13分
解法2:∵平面,平面,
.∴為圓的直徑,即. 設(shè)正方形的邊長為,
中,,
中,,
,解得,.∴
設(shè)平面的法向量為

,則是平面的一個(gè)法向量.
,
.∴.故二面角的平面角的正切值為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在四面體中,截面是正方形,則在下列命題中,錯(cuò)誤的為(    )
A.
B.∥截面
C.異面直線所成的角為
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖6,正方形所在平面與圓所在平面相交于,線段為圓的弦,垂直于圓所在平面,垂足是圓上異于、的點(diǎn),,圓的直徑為9.
(1)求證:平面平面
(2)求三棱錐D-ABE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方體A-C1中,棱長為1,M在棱AB上,AM=1/3,P是面ABCD上的動點(diǎn),P到線A1D1的距離與P到點(diǎn)M的距離平方差為1,則P點(diǎn)的軌跡以下哪條曲線上? (   ) 
A.圓B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在四棱錐P-ABCD中,底面
ABCD是矩形,PA⊥平面ABCD,AP=AB,
BP=BC=2,E,F(xiàn)分別是PB,PC的中點(diǎn).
(Ⅰ)證明:EF∥平面PAD;
(Ⅱ)求四棱錐E-ABCD的體積V;
(Ⅲ)求二面角E-AD-C的大小.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知三棱錐的四個(gè)頂點(diǎn)均在半徑為3的球面上,且PA、PBPC兩兩互相垂直,則三棱錐的側(cè)面積的最大值為               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

 如圖,如果MC⊥菱形ABCD所在的平面,
那么MA與BD的位置關(guān)系是
A.垂直相交 B.相交但不垂直
C.異面但不垂直D.異面且垂直
  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12)
如圖,在四棱錐S—ABCD中,已知底面ABCD為直角梯形,其中AD//BC,底面ABCD,SA=AB=BC=2,SD與平面ABCD所成角的正切值為。
(Ⅰ)在棱SD上找一點(diǎn)E,使CE//平面SAB,
并證明。
(Ⅱ)求二面角B—SC—D的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知球O的球面上四點(diǎn)A、B、C、D,平面ABC,
,則球O的體積等于      。

查看答案和解析>>

同步練習(xí)冊答案