在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*,
(Ⅰ)證明:數(shù)列{an-n}是等比數(shù)列;
(Ⅱ)設(shè)bn=nan-n2-n,求數(shù)列{bn}的前n項(xiàng)和Sn;
分析:(Ⅰ)把題設(shè)整理成a
n+1-(n+1)=4(a
n-n)的樣式進(jìn)而可知
=4為常數(shù),判定數(shù)列{a
n-n}是等比數(shù)列.
(Ⅱ)由(Ⅰ)中的首項(xiàng)和公比可求得{a
n-n}的通項(xiàng)公式,進(jìn)而根據(jù)題設(shè)求得數(shù)列{b
n}的通項(xiàng)公式,進(jìn)而根據(jù)錯(cuò)位相減法求得數(shù)列{b
n}的前n項(xiàng)和S
n.
解答:(Ⅰ)證明:由題設(shè)a
n+1=4a
n-3n+1,
得a
n+1-(n+1)=4(a
n-n),n∈N
+又a
1-1=1≠0∴
=4∴數(shù)列{a
n-n}是首項(xiàng)為1,且公比為4的等比數(shù)列
(Ⅱ)解:由(1)可知a
n-n=4
n-1而b
n=n(a
n-n)-n=n•4
n-1-n
∴S
n=1•4
0+2•4
1+3•4
2+n•4
n-1-(1+2+3+n)T
n
=1•4
0+2•4
1+3•4
2+n•4
n-1①
4T
n=1•4
1+2•4
2+3•4
3+(n-1)•4
n-1+n•4
n②
由①-②得:-3T
n=1+4+4
2+4
n-1-n•4
n=
-n•4n=-n•4n∴
Tn=+=+(-)•4n=
+=Sn=- 點(diǎn)評(píng):本題主要考查了等比數(shù)列的判定和數(shù)列的求和問(wèn)題.當(dāng)數(shù)列是由等比和等差數(shù)列構(gòu)成時(shí),?捎缅e(cuò)位相減法求的數(shù)列的前n項(xiàng)和.