【題目】已知函數(shù)f(x)的圖象與函數(shù)y=3x的圖象關(guān)于直線y=x對稱,則f(9)= .
【答案】2
【解析】解:法一:∵函數(shù)y=f(x)的圖象與函數(shù)y=3x的圖象關(guān)于直線y=x對稱,
∴函數(shù)y=f(x)與函數(shù)y=3x互為反函數(shù),
又∵函數(shù)y=3x的反函數(shù)為:
y=log3x,
即f(x)=log3x,
∴f(9)=log39=2,
所以答案是:2.
法二:假設(shè)f(9)=t,則函數(shù)f(x)的圖象過點(diǎn)(9,t)
則點(diǎn)(9,t)關(guān)于直線y=x對稱的點(diǎn)(t,9)在函數(shù)y=3x的圖象上
即9=3t , 解得t=2
所以答案是:2.
【考點(diǎn)精析】掌握指數(shù)函數(shù)的圖像與性質(zhì)是解答本題的根本,需要知道a0=1, 即x=0時,y=1,圖象都經(jīng)過(0,1)點(diǎn);ax=a,即x=1時,y等于底數(shù)a;在0<a<1時:x<0時,ax>1,x>0時,0<ax<1;在a>1時:x<0時,0<ax<1,x>0時,ax>1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若六進(jìn)制數(shù)10k5(6)(k為正整數(shù))化為二進(jìn)制數(shù)為11101111(2) , 則k= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國個人所得稅法》規(guī)定:2011年9月1 日開始個人所得稅起征點(diǎn)由原來的2000元提高到3500元.也就是說原來月收人超過2000元的部分需要納稅,2011年9月1日開始超過3500元的部分需要納稅,若稅法修改前后超過部分的稅率相同.按如表分段計(jì)稅
級數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過1500元的部分 | 3 |
2 | 超過1500不超過4500元的部分 | 10 |
3 | 超過4500不超過9000元的部分 | 20 |
某職工2011年5月交納個人所得稅295元,在收人不變的情況下,2011年10月該職工需交納個人所得稅元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三個數(shù)60.7 , 0.76 , log0.76的大小順序是( )
A.0.76<60.7<log0.76
B.0.76<log0.76<60.7
C.log0.76<60.7<0.76
D.log0.76<0.76<60.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】復(fù)數(shù)z=2﹣3i對應(yīng)的點(diǎn)z在復(fù)平面的( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={0,1,2,3},A={0,1,2},B={1,2,3},則A∩(UB)=( )
A.{0}
B.{1,2}
C.{0,3}
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex﹣e﹣x+1(e為自然對數(shù)的底數(shù)),若f(2x﹣1)+f(4﹣x2)>2,則實(shí)數(shù)x的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若X是一個集合,τ是一個以X的某些子集為元素的集合,且滿足:
①X屬于τ,屬于τ;
②τ中任意多個元素的并集屬于τ;
③τ中任意多個元素的交集屬于τ.則稱τ是集合X上的一個拓?fù)洌?/span>
已知集合X={a,b,c},對于下面給出的四個集合τ:
①τ={,{a},{c},{a,b,c}};
②τ={,,{c},{b,c},{a,b,c}};
③τ={,{a},{a,b},{a,c}};
④τ={,{a,c},{b,c},{c},{a,b,c}}.
其中是集合X上的拓?fù)涞募夕拥男蛱柺牵ā 。?/span>
A.①
B.②
C.②③
D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com