如圖,從圓外一點引圓的切線和割線,已知,圓的半徑,則圓心的距離為          

試題分析:解:設(shè)BC=x,∵AD=4,圓O的半徑r=AB=4,∴(4)2=4(4+x),解得BC=x=4.∴△OBC是邊長為4的等邊三角形,∴圓心O到AC的距離d==2故答案為:2 
點評:本題考查與圓有關(guān)的比例線段,是基礎(chǔ)題.解題時要認真審題,注意切割線定理的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:

(1)l是⊙O的切線;
(2)PB平分∠ABD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四邊形是☉的內(nèi)接四邊形,不經(jīng)過點,平分,經(jīng)過點的直線分別交的延長線于點,且,證明:

(1);
(2)是☉的切線.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(幾何證明選做題) 如圖,⊙O的直徑=6cm,是延長線上的一點,過點作⊙O的切線,切點為,連結(jié),若,則=             .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖,AB、CD是圓的兩條弦,
且AB是線段CD的中垂線,已知AB=6,CD=,則線段AC的長度為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直角三角形的頂點坐標,直角頂點,頂點軸上,點為線段的中點

(Ⅰ)求邊所在直線方程;
(Ⅱ)為直角三角形外接圓的圓心,求圓的方程;
(Ⅲ)若動圓過點且與圓內(nèi)切,求動圓的圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

選修4—1:幾何證明選講
如圖所示,已知PA是⊙O相切,A為切點,PBC為割線,弦CD//AP,AD、BC相交于 E點,F(xiàn)為CE上一點,且

(1)求證:A、P、D、F四點共圓;
(2)若AE·ED=24,DE=EB=4,求PA的長。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知△ABC內(nèi)接于圓O,點D在OC 的延長線上,AD是⊙0的切線,若∠B=30°,AC=2,則OD的長為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在矩形中,,,垂足為,則      

查看答案和解析>>

同步練習冊答案