設(shè)向量,,其中.
(1)若,求的值;
(2)求△面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:廣東省惠陽(yáng)高級(jí)中學(xué)10-11學(xué)年高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題
(本小題滿分12分)設(shè)向量,,其中.
(1)若,求的值;
(2)求△面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)理數(shù)學(xué)卷(解析版) 題型:填空題
設(shè)向量,,其中,由不等式 恒成立,可以證明(柯西)不等式(當(dāng)且僅當(dāng)∥,即時(shí)等號(hào)成立),己知,若恒成立,利用可西不等式可求得實(shí)數(shù)的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)文數(shù)學(xué)卷(解析版) 題型:填空題
設(shè)向量,,其中,由不等式 恒成立,可以證明(柯西)不等式(當(dāng)且僅當(dāng)∥,即時(shí)等號(hào)成立),己知,若恒成立,利用可西不等式可求得實(shí)數(shù)的取值范圍是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com