已知函數(shù)f(x)=-x2+8x,求f(x)在區(qū)間[t,t+1]上的最大值h(t).
分析:把二次函數(shù)變?yōu)轫旤c形式,即可找出頂點的橫坐標,得到函數(shù)的對稱軸為直線x=4,分三種情況考慮:當區(qū)間在對稱軸的左邊即t+1小于4時,得到f(x)在[t,t+1]上單調(diào)遞增,則h(t)等于f(t+1),化簡得到h(t)關(guān)于t的關(guān)系式,并求出此時t的取值范圍;當4在區(qū)間內(nèi)即4大于等于t小于等于t+1時,h(t)等于頂點的縱坐標即f(4),求出其值并求出此時t的取值范圍;當區(qū)間在對稱軸的右邊即t大于4時,得到f(x)在[t,t+1]上單調(diào)遞減,則h(t)等于f(t),化簡后得到h(t)關(guān)于t的關(guān)系式,并求出此時t的范圍,綜上,得到h(t)關(guān)于t的分段函數(shù)關(guān)系式.
解答:解:因為f(x)=-x
2+8x=-(x-4)
2+16.
①當t+1<4,即t<3時,f(x)在[t,t+1]上單調(diào)遞增,
則h(t)=f(t+1)=-(t+1)
2+8(t+1)=-t
2+6t+7;
②當t≤4≤t+1,即3≤t≤4時,h(t)=f(4)=16;
③當t>4時,f(x)在[t,t+1]上單調(diào)遞減,
h(t)=f(t)=-t
2+8t.
綜上,
h(t)= | -t2+6t+7,t<3 | 16,3≤t≤4 | -t2+8t,t>4 |
| |
.
點評:此題考查了二次函數(shù)的圖象與性質(zhì),考查了分類討論的數(shù)學思想,是一道綜合題.