已知f(x)=lnx+
x-a
x
,a是常數(shù)且a>0,求當(dāng)f(x)∈[1,2]時(shí),f(x)的最小值為
1
2
的a的值?
考點(diǎn):函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:判斷出f(x)在x∈[1,2]單調(diào)遞增,得出f(1)=
1
2
,求解即可.
解答: 解:∵f(x)=lnx+
x-a
x
,a是常數(shù)且a>0,
∴f(x)=lnx+1-
a
x
,a是常數(shù)且a>0,
∴f(x)在x∈[1,2]單調(diào)遞增,
∵f(x)的最小值為
1
2
,
∴f(1)=
1
2

即ln1+1-a=
1
2
,
解得:a=
1
2
點(diǎn)評(píng):本題考查了綜合函數(shù)的單調(diào)性,運(yùn)用求解參變量的值,屬于中檔題,關(guān)鍵是根據(jù)解析式能夠熟練的判斷單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x+ln(x+
1+x2
),若對(duì)于任意的實(shí)數(shù)a和b,都有f(a)+f(b)>0,則必有( 。
A、a+b>0
B、a-b>0
C、a+b<0
D、a-b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos480°=( 。
A、
1
2
B、
3
2
C、-
1
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程為x2-
y2
3
=1,直線m的方程為x=
1
2
,過雙曲線的右焦點(diǎn)F的直線l與雙曲線的右支相交于點(diǎn)P,Q兩點(diǎn),以PQ為直徑的圓與直線m相交于M,N,記劣弧MN的長(zhǎng)度為n,則
n
|PQ|
的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F是拋物線y2=16x的焦點(diǎn),A,B,C在拋物線上,且橫坐標(biāo)分別是x1,x2,x3,則下列說法正確的有
 

①若
FA
+
FB
+
FC
=
0
,則|
FA
|+|
FB
|+|
FC
|=24;
②若x1+x3=2x2,則|
FA
|,|
FB
|,|
FC
|成等差數(shù)列;
③若直線AB經(jīng)過點(diǎn)F,則以AB為直徑的圓與直線x=-4相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-lnx,g(x)=
lnx
x
,a∈R
(1)當(dāng)a=g′(1)時(shí),討論函數(shù)f(x)的單調(diào)區(qū)間
(2)當(dāng)x∈[0,e]時(shí),是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為某圖形的正視圖、側(cè)視圖及俯視圖,請(qǐng)畫出原圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:y=2x+2,若l與橢圓x2+
y2
4
=1的交點(diǎn)為A、B,點(diǎn)P為橢圓上的動(dòng)點(diǎn),則使△PAB的面積為
2
-1的點(diǎn)P的個(gè)數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求當(dāng)
a
、
b
滿足什么條件時(shí),|
a
+
b
|=|
a
-
b
|.

查看答案和解析>>

同步練習(xí)冊(cè)答案