已知等比數(shù)列,,若數(shù)列的前n項(xiàng)的和為;(1)、若,求的值;(2)、求不等式的解集。

(Ⅰ)  n=7   (Ⅱ)  {2,3,4}


解析:

(1)由已知得      

得  n=7  (6分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

20、已知互不相等的三數(shù)a,b,c成等差數(shù)列,且a<0<b<c,將a,b,c重新適當(dāng)排序后,又能成等比數(shù)列,若a+b+c=6,求a,b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a11,a12,…a18
a21,a22,…a28

a81,a82,…a88
64個(gè)正數(shù)排成8行8列,如上所示:在符合aij(1≤i≤8,1≤j≤8)中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù).已知每一行中的數(shù)依次都成等差數(shù)列,而每一列中的數(shù)依次都成等比數(shù)列(每列公比q都相等)且a11=
1
2
,a24=1,a32=
1
4

(1)若a21=
1
4
,求a12和a13的值.
(2)記第n行各項(xiàng)之和為An(1≤n≤8),數(shù)列{an}、{bn}、{cn}滿足an=
36
An
,聯(lián)mbn+1=2(an+mbn)(m為非零常數(shù)),cn=
bn
an
,且c12+c72=100,求c1+c2+…c7的取值范圍.
(3)對(2)中的an,記dn=
200
an
(n∈N)
,設(shè)Bn=d1•d2…dn(n∈N),求數(shù)列{Bn}中最大項(xiàng)的項(xiàng)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a11,a12,……a18

a21,a22,……a28

…………………

a81,a82,……a88

64個(gè)正數(shù)排成8行8列, 如上所示:在符合中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù)。已知每一行中的數(shù)依次都成等差數(shù)列,而每一列中的數(shù)依次都成等比數(shù)列(每列公比q都相等)且,。

⑴若,求的值。

⑵記第n行各項(xiàng)之和為An(1≤n≤8),數(shù)列{an}、{bn}、{cn}滿足,聯(lián)(m為非零常數(shù)),,且,求的取值范圍。

⑶對⑵中的,記,設(shè),求數(shù)列中最大項(xiàng)的項(xiàng)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

                                   a11,a12,……a18

                                           a21,a22,……a28

                                    ……………………

64個(gè)正數(shù)排成8行8列, 如下所示:        a81,a82,……a88

   在符合中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù)。已知每一行中的數(shù)依次都成等差數(shù)列,而每一列中的數(shù)依次都成等比數(shù)列(每列公比q都相等)且,。  

⑴若,求的值。

⑵記第n行各項(xiàng)之和為An(1≤n≤8),數(shù)列{an}、{bn}、{cn}滿足,聯(lián)(m為非零常數(shù)),,且,求的取值范圍。

⑶對⑵中的,記,設(shè),求數(shù)列中最大項(xiàng)的項(xiàng)數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010年上海市華東師大二附中高三數(shù)學(xué)綜合練習(xí)試卷(04)(解析版) 題型:解答題

a11,a12,…a18
a21,a22,…a28

a81,a82,…a88
64個(gè)正數(shù)排成8行8列,如上所示:在符合aij(1≤i≤8,1≤j≤8)中,i表示該數(shù)所在的行數(shù),j表示該數(shù)所在的列數(shù).已知每一行中的數(shù)依次都成等差數(shù)列,而每一列中的數(shù)依次都成等比數(shù)列(每列公比q都相等)且,a24=1,
(1)若,求a12和a13的值.
(2)記第n行各項(xiàng)之和為An(1≤n≤8),數(shù)列{an}、{bn}、{cn}滿足,聯(lián)mbn+1=2(an+mbn)(m為非零常數(shù)),,且c12+c72=100,求c1+c2+…c7的取值范圍.
(3)對(2)中的an,記,設(shè)Bn=d1•d2…dn(n∈N),求數(shù)列{Bn}中最大項(xiàng)的項(xiàng)數(shù).

查看答案和解析>>

同步練習(xí)冊答案