如圖,在正方體中,點(diǎn)為線段的中點(diǎn).設(shè)點(diǎn)在線段上,直線與平面所成的角為,則的取值范圍是( )
A. | B. | C. | D. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)
如圖,圓柱OO1內(nèi)有一個(gè)三棱柱ABC-A1B1C1,
三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O的直徑。
(Ⅰ)證明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)設(shè)AB=AA1。在圓柱OO1內(nèi)隨機(jī)選取一點(diǎn),記該點(diǎn)取自于
三棱柱ABC-A1B1C1內(nèi)的概率為P。
(i) 當(dāng)點(diǎn)C在圓周上運(yùn)動(dòng)時(shí),求P的最大值;
記平面A1ACC1與平面B1OC所成的角為(0°< 90°)。當(dāng)P取最大值時(shí),求cos的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知,,為三條不同的直線,,為兩個(gè)不同的平面,下列命題中正確的是( )
A.⊥,⊥,且,則⊥. |
B.若平面內(nèi)有不共線的三點(diǎn)到平面的距離相等,則. |
C.若,,則. |
D.若,,則. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
下列四個(gè)命題中,正確命題的個(gè)數(shù)是( )個(gè)
① 若平面平面,直線平面,則;
② 若平面平面,且平面平面,則;
③平面平面,且,點(diǎn),,若直線,則;
④直線為異面直線,且平面,平面,若,則.
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,,,M、N分別是BC、AB的中點(diǎn),沿直線MN將折起,使二面角的大小為,則與平面ABC所成角的正切值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知在四面體ABCD中,E、F分別是AC、BD的中點(diǎn),若CD=2AB=4,EFAB,則EF與CD所成的角為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖,在四邊形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,將△ABD沿BD折起,使平面ABD⊥平面BCD,構(gòu)成三棱錐A-BCD,則在三棱錐A-BCD中,下列命題正確的是( )
A.平面ABD⊥平面ABC | B.平面ADC⊥平面BDC |
C.平面ABC⊥平面BDC | D.平面ADC⊥平面ABC |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
如圖(a),在正方形ABCD中,E、F分別是BC、CD的中點(diǎn),G是EF的中點(diǎn),現(xiàn)在沿AE、AF及EF把這個(gè)正方形折成一個(gè)四面體,使B、C、D三點(diǎn)重合,重合后的點(diǎn)記為H,如圖(b)所示,那么,在四面體A-EFH中必有( )
A.AH⊥△EFH所在平面
B.AG⊥△EFH所在平面
C.HF⊥△AEF所在平面
D.HG⊥△AEF所在平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)m,n是平面α內(nèi)的兩條不同直線;l1,l2是平面β內(nèi)的兩條相交直線,則α∥β的一個(gè)充分而不必要條件是( )
A.m∥β且l1∥α | B.m∥l1且n∥l2 |
C.m∥β且n∥β | D.m∥β且n∥l2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com