(本小題滿分13分)

如圖,在直三棱柱ABC-A1B1C1中,平面A1BC⊥側(cè)面A1ABB1.

(Ⅰ)求證:AB⊥BC;

(Ⅱ)若直線AC與平面A1BC所成的角為θ,二面角A1-BC-A的大小為φ.判斷θ與φ的大小關系,并予以證明.

 

【答案】

【解析】(Ⅰ)證明:如右圖,過點A在平面A1ABB1內(nèi)作

ADA1BD,則

由平面A1BC⊥側(cè)面A1ABB1,且平面A1BC側(cè)面A1ABB1=A1B,得

AD⊥平面A1BC,又BC平面A1BC,

所以ADBC. ……………………………………………………...2分

因為三棱柱ABCA1B1C1是直三棱柱,

AA1⊥底面ABC,

所以AA1⊥BC……………………………………………..……..…3分

AA1AD=A,從而BC⊥側(cè)面A1ABB1,

AB側(cè)面A1ABB1,故ABBC. ………………………..…...4分

(Ⅱ)解法1:連接CD,則由(Ⅰ)知是直線AC與平面A1BC所成的角,……………………………………….………………...6分

是二面角A1BCA的平面角,即

于是在Rt△ADC中,在Rt△ADB中,…...8分

ABAC,得………………………………….……...11分

所以…………………………………………....13分

 

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015屆江西省高一第二次月考數(shù)學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數(shù).

(1)求函數(shù)的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數(shù)在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).

(1)求的值;(2)判斷函數(shù)的單調(diào)性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數(shù)學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:河南省09-10學年高二下學期期末數(shù)學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省高三5月月考調(diào)理科數(shù)學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數(shù),數(shù)列{}的首項.

(1) 求函數(shù)的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數(shù)列的前項和

 

 

查看答案和解析>>

同步練習冊答案