10.已知a=22.1,b=21.9,c=0.32.1,則a,b,c大小關(guān)系為a>b>c.

分析 根據(jù)指數(shù)函數(shù)的單調(diào)性,判斷函數(shù)的取值范圍即可比較大小.

解答 解:22.1>21.9>1,c=0.32.1<1,
即a>b>c,
故答案為:a>b>c

點評 本題主要考查指數(shù)冪的大小比較,根據(jù)指數(shù)函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.平面內(nèi)兩定點的距離為6,一動點M到兩定點的距離之和等于10,建立適當(dāng)?shù)闹苯亲鴺?biāo)系,寫出動點M滿足的軌跡方程,并畫出草圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知曲線C1:ρ=2cosθ,曲線C2:$\left\{\begin{array}{l}{x=5cost}\\{y=4sint}\end{array}\right.$(t為參數(shù)),
(1)化C1為直角坐標(biāo)方程,化C2為普通方程;
(2)若M為曲線C2上一動點,N為曲線C1上一動點,求|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知等比數(shù)列{an}的各項均為正數(shù),公比0<q<1,設(shè)P=$\frac{{a}_{3}+{a}_{9}}{2}$,Q=$\sqrt{{a}_{5}{a}_{7}}$,則a3,a9,P與Q的大小關(guān)系是(  )
A.a3>P>Q>a9B.a3>Q>P>a9C.a9>P>a3>QD.P>Q>a3>a9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知數(shù)列{an}的首項a1=1,且對每個n∈N*,an,an+1是方程x2+2nx+bn=0的兩根,則b10=189.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若函數(shù)$f(x)=x({m+\frac{1}{{{e^x}-1}}})$為偶函數(shù),則m的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)$f(x)={x^2}+\frac{a}{x}$(a∈R).
(1)判斷f(x)的奇偶性;
(2)當(dāng)a=1時,求證:函數(shù)y=f(x)在區(qū)間$({0,\root{3}{{\frac{1}{2}}}})$上是單調(diào)遞減函數(shù),在區(qū)間($\root{3}{\frac{1}{2}}$,+∞)上是單調(diào)遞增函數(shù);
(3)若正實數(shù)x,y,z滿足x+y2=z,x2+y=z2,求z的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列說法正確的是( 。
A.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
C.“a>1”是“f(x)=logax(a>0,a≠1)在(0,+∞)上為增函數(shù)”的充要條件
D.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=log2(1-x),g(x)=log2(1+x),令F(x)=f(x)-g(x).
(1)求F(x)的定義域;
(2)若a,b∈(0,1),猜想F(a)+F(b)與F($\frac{a+b}{1+ab}$)之間的關(guān)系并證明.

查看答案和解析>>

同步練習(xí)冊答案