17.如果a∩b=M,a∥平面β,則b與β的位置關(guān)系是平行或相交.

分析 對a,b確定的平面α與β的關(guān)系進行討論得出結(jié)論.

解答 解:設a,b確定的平面為α,
若α∥β,則b∥β,
若α與β相交,則b與β相交,
故答案為:平行或相交.

點評 本題考查了空間線面位置關(guān)系的判斷,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知非零向量$\overrightarrow a,\vec b$滿足$|\overrightarrow a|=2|\vec b|$且$(\overrightarrow a+\vec b)⊥\vec b$,則向量$\overrightarrow a,\vec b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知單位向量$\overrightarrow a,\overrightarrow b$滿足$\overrightarrow a⊥\overrightarrow b$,向量$\overrightarrow m=2\overrightarrow a-\sqrt{t-1}\overrightarrow b,\overrightarrow n=t\overrightarrow a+\overrightarrow b$,(t為正實數(shù)),則$\overrightarrow m•\overrightarrow n$的最小值為( 。
A.$\frac{15}{8}$B.$\frac{5}{2}$C.$\frac{15}{4}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.過曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點F作曲線C2:x2+y2=a2的切線,設切點為M,延長FM交曲線C3:y2=2px(p>0)于點N,其中曲線C1與C3有一個共同的焦點,若OF=ON(O為坐標原點),則曲線C1的離心率為(  )
A.$\frac{\sqrt{5}+1}{2}$B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{5}$+1D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,且直線${l_1}:\frac{x}{a}+\frac{y}=1$被橢圓C1截得的弦長為$\sqrt{7}$.
(I)求橢圓C1的方程;
(II)以橢圓C1的長軸為直徑作圓C2,過直線l2:y=4上的動點M作圓C2的兩條切線,設切點為A,B,若直線AB與橢圓C1交于不同的兩點C,D,求|CD|•|AB|的取信范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求B到平面CDE的距離
(2)在線段DE上是否存在一點F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,AB=BC=$\sqrt{2}$,BB1=3,D為A1C1的中點,F(xiàn)在線段AA1上.
(1)AF為何值時,CF與平面B1DF所成的角為直角?
(2)設AF=1,求平面B1CF與平面ABC所成的 銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù),根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖.
分組頻數(shù)頻率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30]20.05
合計M1
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間[10,15)內(nèi)的人數(shù);
(3)估計這次學生參加社區(qū)服務人數(shù)的眾數(shù)、中位數(shù)以及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,已知a=3,b=5,c=$\sqrt{19}$,則最大角與最小角的和為( 。
A.90°B.120°C.135°D.150°

查看答案和解析>>

同步練習冊答案