12.某志愿者到某山區(qū)小學支教,為了解留守兒童的幸福感,該志愿者對某班40名學生進行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如圖(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強).
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成2×2列聯(lián)表,并判斷能否有95%的把握認為孩子的幸福感強與是否是留守兒童有關(guān)?
幸福感強幸福感弱總計
留守兒童6915
非留守兒童18725
總計241640
(2)從15個留守兒童中按幸福感強弱進行分層抽樣,共抽取5人,又在這5人中隨機抽取2人進行家訪,求這2個學生中恰有一人幸福感強的概率.
參考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.
附表:
P(K2≥k00.0500.010
k03.8416.635

分析 (1)根據(jù)題意,填寫2×2列聯(lián)表,計算觀測值,對照臨界值表得出結(jié)論;
(2)按分層抽樣方法抽出幸福感強的孩子,利用列舉法得出基本事件數(shù),求出對應(yīng)的概率值.

解答 解:(1)根據(jù)題意,填寫2×2列聯(lián)表如下:

幸福感強幸福感弱總計
留守兒童6915
非留守兒童18725
總計241640
計算${K^2}=\frac{{40×{{({6×7-9×18})}^2}}}{15×25×24×16}=4>3.841$,
對照臨界值表得,有95%的把握認為孩子的幸福感強與是否留守兒童有關(guān);…(6分)
(2)按分層抽樣的方法可抽出幸福感強的孩子2人,記作:a1,a2
幸福感弱的孩子3人,記作:b1,b2,b3
“抽取2人”包含的基本事件有(a1,a2),(a1,b1),(a1,b2),(a1,b3),
(a2,b1),(a2,b2),(a2,b3),
(b1,b2),(b1,b3),(b2,b3)共10個;…(8分)
事件A:“恰有一人幸福感強”包含的基本事件有
(a1,b1),(a1,b2),(a1,b3),
(a2,b1),(a2,b2),(a2,b3)共6個;…(10分)
故所求的概率為$P(A)=\frac{6}{10}=\frac{3}{5}$.…(12分)

點評 本題考查了對立性檢驗與分層抽樣方法和列舉法求古典概型的概率問題,是綜合性題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為( 。
A.B.12πC.48πD.6$\sqrt{3}$π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)a=log310,b=log37,則3a-b=( 。
A.$\frac{10}{49}$B.$\frac{49}{10}$C.$\frac{7}{10}$D.$\frac{10}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設(shè)x,y∈R,則“|x|+|y|>1”的一個充分條件是( 。
A.|x|≥1B.|x+y|≥1C.y≤-2D.$|x|≥\frac{1}{2}$且$|y|≥\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.對于函數(shù)f(x),若存在實數(shù)m,使得f(x+m)-f(m)為R上的奇函數(shù),則稱f(x)是位差值為m的“位差奇函數(shù)”.
(1)判斷函數(shù)f(x)=2x+1和g(x)=2x是否為位差奇函數(shù)?說明理由;
(2)若f(x)=sin(x+φ)是位差值為$\frac{π}{4}$的位差奇函數(shù),求φ的值;
(3)若f(x)=x3+bx2+cx對任意屬于區(qū)間$[-\frac{1}{2},+∞)$中的m都不是位差奇函數(shù),求實數(shù)b,c滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知曲線C1的極坐標方程為ρcosθ-ρsinθ+2=0,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)),將曲線C2上的所有點的橫坐標變?yōu)樵瓉淼?倍,縱坐標變?yōu)樵瓉淼?\frac{3}{2}$倍,得到曲線C3
(1)寫出曲線C1的參數(shù)方程和曲線C3的普通方程;
(2)已知點P(0,2),曲線C1與曲線C3相交于A,B,求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示的多面體ABCDE中,已知ABCD是邊長為2的正方形,平面ABCD⊥平面ABE,∠AEB=90°,AE=BE.
(Ⅰ)若M是DE的中點,試在AC上找一點N,使得MN∥平面ABE,并給出證明;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.函數(shù)$f(x)=2sinx+2cosx-sin2x+1,x∈[{-\frac{5π}{12},\frac{π}{3}})$的值域是[$\frac{3}{2}$-$\sqrt{2}$,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若集合A={x|x2-3x-10<0},集合B={x|-3<x<4},全集為R,則A∩(∁RB)等于(  )
A.(-2,4)B.[4,5)C.(-3,-2)D.(2,4)

查看答案和解析>>

同步練習冊答案