“a>1”是“函數(shù)y=x2-2ax+a有兩個(gè)零點(diǎn)”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:結(jié)合二次函數(shù)零點(diǎn)的定義,利用充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若函數(shù)y=x2-2ax+a有兩個(gè)零點(diǎn),則△=4a2-4a>0,解得a>1或a<0,此時(shí)必要性不成立,
則a>1,則a>1或a<0,充分性成立.
“a>1”是“函數(shù)y=x2-2ax+a有兩個(gè)零點(diǎn)”的充分不必要條件,
故選:A.
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判斷,利用二次函數(shù)零點(diǎn)的定義是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試中的數(shù)學(xué)成績.乙組記錄中有一個(gè)數(shù)字模糊,無法確認(rèn),假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以a表示.乙組平均成績超過甲組平均成績的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-ax2+ax-1,x∈[0,1],若a≥
1
2
,則f(x)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=log32,y=log95,z=0.5-0.2,則( 。
A、x<y<z
B、z<x<y
C、z<y<x
D、y<z<x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

i是虛數(shù)單位,則復(fù)數(shù)
3+4i
1+i
等于( 。
A、
7
2
-
i
2
B、
7
2
+
i
2
C、-
1
2
-
i
2
D、-
1
2
+
i
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若A=
π
3
,a=
3
,則b2+c2的取值范圍是( 。
A、[3,6]
B、[2,8]
C、(2,6)
D、(3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=
2
1
(3x2-2x)dx,則(ax2-
1
x
6的展開式中的第4項(xiàng)為( 。
A、-1280x3
B、-1280
C、240
D、-240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A=﹛x|x-2>0﹜,B=﹛x|x|≤1﹜.則(∁UA)∪B=( 。
A、{x|-1≤x≤1}
B、{x|-1≤x≤1或x>2}
C、{x|-1≤x≤2}
D、{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinωx•cosωx+sin2ωx-
1
2
(ω>0),其相鄰兩個(gè)零點(diǎn)間的距離為
π
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)銳角△ABC中,f(
A
2
+
π
8
)=
1
2
,AB=4,△ABC的面積為6,求BC的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案