正方形的邊長(zhǎng)為2,分別為邊的中點(diǎn),是線段的中點(diǎn),如圖,把正方形沿折起,設(shè)

(1)求證:無論取何值,不可能垂直;
(2)設(shè)二面角的大小為,當(dāng)時(shí),求的值.
(1)不可能垂直; (2)的值為

試題分析:(1)假設(shè),                                     1分
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824020126892615.png" style="vertical-align:middle;" />,,所以平面,          3分
所以,又,所以,              5分
這與矛盾,所以假設(shè)不成立,所以不可能垂直;   6分
(2)分別以軸,過點(diǎn)垂直平面向上為軸,如圖建立坐標(biāo)系,

設(shè)平面的一個(gè)法向量為,
,
,     7分
,   8分
設(shè)平面的一個(gè)法向量為
,,       9分
,   10分
                11分
=,                              12分
,                                             13分
所以當(dāng)時(shí),的值為.                     14分
點(diǎn)評(píng):中檔題,立體幾何問題中,平行關(guān)系、垂直關(guān)系,角、距離、面積、體積等的計(jì)算,是常見題型,基本思路是將空間問題轉(zhuǎn)化成為平面問題,利用平面幾何知識(shí)加以解決。要注意遵循“一作,二證,三計(jì)算”。利用“向量法”,通過建立空間直角坐標(biāo)系,往往能簡(jiǎn)化解題過程。對(duì)于折疊問題,首先要弄清“變”與“不變”的幾何元素。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,六棱錐的底面是邊長(zhǎng)為1的正六邊形,底面。
(Ⅰ)求證:平面平面;
(Ⅱ)若直線PC與平面PDE所成角為,求三棱錐高的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得點(diǎn)在平面ADC上的正投影O恰好落在線段上,如圖2所示,點(diǎn)分別為線段PC,CD的中點(diǎn).

(I) 求證:平面OEF//平面APD;
(II)求直線CD與平面POF;
(III)在棱PC上是否存在一點(diǎn),使得到點(diǎn)P,O,C,F四點(diǎn)的距離相等?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,

(I)求證
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的是(  )
A.有兩個(gè)面平行,其余各面都是四邊形的幾何體叫棱柱.
B.有兩個(gè)面平行,其余各面都是平行四邊形的幾何體叫棱柱.
C.有兩個(gè)面平行,其余各面都是四邊形,并且每相鄰兩個(gè)四邊形的公共邊都互相平行的幾何體叫棱柱.
D.用一個(gè)平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺(tái).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC 中,∠C =90°,∠B =30°,AC=1,M 為 AB 中點(diǎn),將△ACM 沿 CM 折起,使 A、B 間的距離為 ,則 M 到面 ABC 的距離為(  )

(A)
(B)
(C)1
(D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點(diǎn),則在原來的正方體中( )

A.         B.相交
C.         D.所成的角為 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱中,

(1)求異面直線 與所成角的大;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m、n是兩條不重合的直線,α、β是兩個(gè)不重合的平面,下列命題中正確的是(  )
A.若m∥α,n∥β,α∥β,則m∥nB.若m∥n,nÌα,m(/α,則m∥α
C.若α⊥β,m⊥α,則m∥βD.若m⊥α,nÌβ,m⊥n,則α⊥β

查看答案和解析>>

同步練習(xí)冊(cè)答案