(本小題滿分12分)
如圖,已知三棱錐PABC中,PA⊥平面ABC,
ABAC,PAACAB,NAB上一點,
AB=4AN,M,S分別為PB,BC的中點.
(I)證明:CMSN
(II)求SN與平面CMN所成角的大小.
(I)略
(II)SN與平面CMN所成角為45°.
PA=1,以A為原點,射線AB,AC,AP分別為x,y,z軸正向建立空間直角坐標系,如圖.
P(0,0,1),C(0,1,0),B(2,0,0),M(1,0,),


 
N(,0,0),S(1,,0),

(I)證明:CM=(1,-1,),SN=(-,-,0),
因為CM·SN=-+0=0,所以CMSN.
(II)解:NC=(-,1,0),
設a=(x,y,z)為平面CMN的一個法向量,則
x=2,得a=(2,1,-2),因為|cos(a,SN)|=||=,
所以SN與平面CMN所成角為45°.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)如圖,三棱錐ABPC中,APPC,ACBC,MAB中點,DPB中點,且△PMB為正三角形。
(Ⅰ)求證:DM//平面APC
(Ⅱ)求證:BC⊥平面APC;
(Ⅲ)若BC=4,AB=20,求三棱錐DBCM的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在直三棱柱ABC—A1B1C1中,AB⊥BC,P為A1C1的中點,AB=BC=kPA。
(I)當k=1時,求證PA⊥B1C;
(II)當k為何值時,直線PA與平面BB1C1C所成的角的正弦值為,并求此時二面角A—PC—B的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,三棱錐P—ABC中,平面PAC⊥平面BAC,AP=AB=AC=2,∠BAC=∠PAC=120°。
(I)求棱PB的長;
(II)求二面角P—AB—C的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
一個四棱錐的底面是邊長為的正方形,且。
(1)求證:平面;
(2)若為四棱錐中最長的側棱,點的中點.求直線SE.與平面SAC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點D是AB的中點.
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:在四面體中,平面
,,,,
的中點;
(1)求證;
(2)求直線與平面所成的角。
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線m⊥平面,直線平面,則下列命題正確的是               (   )
A.若αβ,則mnB.若αβ,則mn
C.若mn,則αβD.若nα,則αβ

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設地球的半徑為R,在北緯45°圈上有甲、乙兩地,它們分別在東經50°與東經140°圈上,則甲、乙兩地的球面距離是                  

查看答案和解析>>

同步練習冊答案