分析 設(shè)切點P(m,$\frac{1}{m+1}$),求得函數(shù)的導(dǎo)數(shù),可得切線的斜率,再由切線過原點,運用直線的斜率公式,解方程即可得到所求P的坐標(biāo).
解答 解:設(shè)切點P(m,$\frac{1}{m+1}$),
y=$\frac{1}{x+1}$的導(dǎo)數(shù)為y′=-$\frac{1}{(x+1)^{2}}$,
可得切線的斜率為-$\frac{1}{(m+1)^{2}}$,
由題意可得-$\frac{1}{(m+1)^{2}}$=$\frac{1}{m(m+1)}$,
解得m=-$\frac{1}{2}$,$\frac{1}{m+1}$=2.
即P(-$\frac{1}{2}$,2).
故答案為:(-$\frac{1}{2}$,2).
點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義和直線的斜率公式,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{32}$ | B. | $\frac{9}{32}$ | C. | $\frac{7}{16}$ | D. | $\frac{9}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com