設(shè)a>0,0≤x≤2π,如果函數(shù)y=cos2x-asinx+b的最大值是0,最小值是-4,求常數(shù)a與b.
分析:通過平方關(guān)系,配方法,對(duì)a分類0<a≤2,a>2討論,結(jié)合函數(shù)的最值,求出a,b的值即可.
解答:解:f(x)=y=cos2x-asinx+b=-sin2x-asinx+b+1=-(sinx+
a
2
)2
+
a2
4
+b+1

因?yàn)閍>0所以-
a
2
<0,
(ⅰ)當(dāng)0<
a
2
≤1
,即0<a≤2時(shí)ymax=f(-
a
2
)
=
a2
4
+b+1
=0①
ymin=f(1)=b-a=-4②
由①②解得
a=2
b=-2
a=-6
b=-10
(舍去)
(ⅱ)當(dāng)
a
2
>1
,即a>2時(shí)ymax=f(-1)=a+b=0③
ymin=f(1)=b-a=-4④
由③④解得
a=2
b=-2
(舍去)
綜上,
a=2
b=-2
點(diǎn)評(píng):本題是中檔題,考查三角函數(shù)的最值的應(yīng)用,考查分類討論思想,配方法的應(yīng)用,注意三角函數(shù)的有界性,是本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)判斷:
①定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí)f(x)=x2+2,則函數(shù)f(x)的值域?yàn)閧y|y≥2或y≤-2};
②若不等式x3+x2+a<0對(duì)一切x∈[0,2]恒成立,則實(shí)數(shù)a的取值范圍是{a|a<-12};
③當(dāng)f(x)=log3x時(shí),對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
;
④設(shè)g(x)表示不超過t>0的最大整數(shù),如:[2]=2,[1.25]=1,對(duì)于給定的n∈N+,定義
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當(dāng)x∈[
3
2
,2)時(shí)函數(shù)
C
x
8
的值域是(4,
16
3
]
;
上述判斷中正確的結(jié)論的序號(hào)是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,0≤x<2π,若函數(shù)y=cos2x-asinx+b的最大值為0,最小值為-4,試求a與b的值,并求使y取得最大值和最小值時(shí)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《第1章 三角函數(shù)》2013年單元測試卷(3)(解析版) 題型:解答題

設(shè)a>0,0≤x<2π,若函數(shù)y=cos2x-asinx+b的最大值為0,最小值為-4,試求a與b的值,并求使y取得最大值和最小值時(shí)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省安慶市花涼中學(xué)高一(上)教學(xué)質(zhì)量檢測數(shù)學(xué)試卷(必修4)(解析版) 題型:解答題

設(shè)a>0,0≤x≤2π,如果函數(shù)y=cos2x-asinx+b的最大值是0,最小值是-4,求常數(shù)a與b.

查看答案和解析>>

同步練習(xí)冊(cè)答案