已知ω>0,函數(shù)f(x)=cos(ωx+
π
4
)
(
π
2
,π)
上單調(diào)遞減.則ω的取值范圍是( 。
分析:先求得余弦函數(shù)的單調(diào)遞減區(qū)間,結(jié)合題意可得
-
π
π
2
π≤
,再由ω>0,共同可解得答案.
解答:解:由2kπ≤ωx+
π
4
≤2kπ+π,k∈Z,解得
2kπ
ω
-
π
≤x≤
2kπ
ω
+

令k=0可得-
π
≤x≤
,又函數(shù)f(x)=cos(ωx+
π
4
)
(
π
2
,π)
上單調(diào)遞減,
所以
-
π
π
2
π≤
,解得-
1
2
≤ω
3
4
,由已知可得ω>0,
故0<ω
3
4
,即ω的取值范圍是(0,
3
4
]
故選C
點(diǎn)評(píng):本題考查余弦函數(shù)的單調(diào)性,涉及不等式組的求解,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=
1-ax
x
,x∈({0,+∞}),設(shè)0<x1
2
a
,記曲線y=f(x)在點(diǎn)M(x1,f(x1))處的切線為l,
(1)求l的方程;
(2)設(shè)l與x軸交點(diǎn)為(x2,0)證明:0<x2
1
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=x3-a,x∈(0,+∞),設(shè)x1>0,記曲線y=f(x)在點(diǎn)(x1,f(x1))處的切線為l,
(1)求l的方程;
(2)設(shè)l與x軸交點(diǎn)為(x2,0)證明:
x2a
1
3

②若x2a
1
3
a
1
3
x2x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項(xiàng)的命題中為假命題的是( 。
A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a≤0,函數(shù)f(x)=|x|(x-a).
(I)討論f(x)在R上的奇偶性;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)求函數(shù)f(x)在閉區(qū)間[-1,
12
]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)m≠0,函數(shù)f(x)=
3x-m,(x≤2)
-x-2m,(x>2)
,若f(2-m)=f(2+m),則實(shí)數(shù)m的值為
-
8
3
和8
-
8
3
和8

查看答案和解析>>

同步練習(xí)冊(cè)答案