【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.

(1)求到平面的距離

(2)在線段上是否存在一點,使?若存在,求出的值;若不存在,說明理由.

【答案】(I)(II)見解析.

【解析】試題分析:

(1)利用等體積法結(jié)合題意可求得到平面的距離為

(2)當(dāng)時滿足題意,利用題中所給的條件進(jìn)行證明即可.

試題解析:

解:(1)方法一:因為平面, ,又,

所以平面,又,所以到平面的距離為.

方法二:等積法求高.

(2)解:在線段上存在一點,使平面,

下面給出證明:設(shè)為線段上的一點,且,

過點交于點,則,

因為平面, 平面,

所以,又,所以,

所以四邊形是平行四邊形,

所以,又平面, 平面,

所以平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,角對的邊分別為.

(1)若,;

(2)若面積為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.

(1)求A∩(UB);

(2)若A∪C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C的一個焦點為,對應(yīng)于這個焦點的準(zhǔn)線方程為

(1)寫出拋物線C的方程;

(2)過F點的直線與曲線C交于A、B兩點,O點為坐標(biāo)原點,求△AOB重心G的軌跡方程;

(3)點P是拋物線C上的動點,過點P作圓的切線,切點分別是M,N.當(dāng)P點在何處時,|MN|的值最小?求出|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),以為極點, 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于兩點.

(Ⅰ)求曲線的直角坐標(biāo)方程及直線恒過的定點的坐標(biāo);

(Ⅱ)在(Ⅰ)的條件下,若,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lg(ax﹣bx),且f(1)=lg2,f(2)=lg12

(1)求a,b的值.

(2)當(dāng)x∈[1,2]時,求f(x)的最大值.

(3)m為何值時,函數(shù)g(x)=ax的圖象與h(x)=bx﹣m的圖象恒有兩個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)相交于點

1)證明:平面平面;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,曲線處的切線方程為

(Ⅰ)求的解析式;

(Ⅱ)若對,恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2015高考廣東,文19】設(shè)數(shù)列的前項和為,.已知,,且當(dāng)

時,

(1)求的值;

(2)證明:為等比數(shù)列;

(3)求數(shù)列的通項公式.

查看答案和解析>>

同步練習(xí)冊答案