已知函數(shù)f(x)=
x
1
x
,0≤x≤9
x2+x,-2≤x<0
,則f(x)的零點(diǎn)是
 
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令f(x)=0,結(jié)合x的范圍,求出x的值,即為所求的f(x)的零點(diǎn).
解答: 解:∵函數(shù)f(x)=
x
1
2
0≤x≤9
x2+x-2≤x<0

0≤x≤9
x
1
2
=0
解得 x=0.
-2≤x<0
x2+x=0
 解得 x=-1.
綜上可得f(x)的零點(diǎn)為-1和0.
故答案為0或-1
點(diǎn)評(píng):本題主要考查函數(shù)的零點(diǎn)的定義和求法,求函數(shù)的值域,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用簡便方法計(jì)算:π×[(
0.25
2
2+
0.25
2
×6.275+
0.3
2
×0.275]×2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2x2+ax+b在區(qū)間(-∞,4]上為減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1 (a>b>0)的離心率為
5
5
,若左焦點(diǎn)為F(-1,0)
(1)求橢圓C的方程;
(2)若過點(diǎn)F且傾斜角為
π
4
的直線l交橢圓C于A,B兩點(diǎn),求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的不等式(kx-k2-4)(x-4)>0,其中k∈R.
(1)當(dāng)k=1時(shí),求不等式的解集;
(2)當(dāng)k變化時(shí),試求不等式的解集A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∥β,a?α.b?β,則直線a與b的位置關(guān)系為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:x2+y2-2x+6y=0,則圓心為
 
,半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的函數(shù)是(  )
A、y=x3
B、y=|x|
C、y=-x2+1
D、y=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)為定義在R上的奇函數(shù),且x∈(0,+∞)時(shí),f(x)=2x
(1)求f(x)的表達(dá)式;
(2)若|f(m)|≤2恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案