橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,雙曲線
x2
a2
-
y2
b2
=1
兩漸近線為l1、l2,過橢圓C的右焦點(diǎn)F作直線l,使l⊥l1,又設(shè)l與l2交于點(diǎn)P,l與C兩交點(diǎn)自上而下依次為A、B;
(1)當(dāng)l1與l2夾角為
π
3
,雙曲線焦距為4時(shí),求橢圓C的方程及其離心率;
(2)若
FA
AP
,求λ的最小值.
分析:(1)直接由l1與l2夾角為
π
3
,雙曲線焦距為4時(shí)列出關(guān)于a,b,c的方程,再結(jié)合a,b,c之間的關(guān)系,求出a,b,c,即可求橢圓C的方程及其離心率;
(2)先聯(lián)立l與l2求出點(diǎn)P的坐標(biāo),再根據(jù)
FA
AP
,求出點(diǎn)A的坐標(biāo);由點(diǎn)A在橢圓上,即可得到關(guān)于λ與e之間的等量關(guān)系,最后結(jié)合e的取值范圍以及函數(shù)求最值的方法即可求λ的最小值.
解答:解:(1)由l1與l2夾角為
π
3
知,
b
a
=tan
π
6
=
3
3
…(1分)
又焦距為4∴a=
3
,b=1 
∴橢圓C:
x2
3
+y2
=1,
e=
2
3
=
6
3
.…(3分)
(2)不妨設(shè)l1:y=
b
a
x
,l2:y=-
b
a
x
  則l:y=-
a
b
(x-c)

聯(lián)立:
y=-
a
b
(x-c)
y=-
a
b
x
?P(
a2
c
,-
ab
c

 由
FA
AP
得,
XA=
c+λ•
a2
c
1+λ
yA=
λ•(-
ab
c
)
1+λ

又點(diǎn)A橢圓上,∴
(c+
λa2
c
)
2
(1+λ)2a2
+
(-
abλ
c
)
2
(1+λ)2b2
 =1

    整理得λ2=
(a2-c2c2
a2(2a2-c2
…(7分)
∴λ2=
e2-e4
2-e2
=
(e2-2)2+3(e2-2 )+2
e2-2
=(e2-2)+
2
e2-2
+3
∵0<e<1∴-2<e2-2<-1   
∴-3<(e2-2)+
2
e2-2
≤-2
2

∴0<λ2≤3-2
2

 由題知,λ<0∴1-
2
≤λ<0 …(9分)
所以,λ的最小值為1-
2
.…(10分)
點(diǎn)評(píng):本題主要考查直線與圓錐曲線的綜合問題.第二問涉及到用基本不等式求函數(shù)的值域,在用基本不等式求函數(shù)的值域時(shí),要注意其適用的三個(gè)限制條件:①均為正數(shù),②積(或)和為定值,③等號(hào)成立時(shí)變量有意義.
所以在第二問用基本不等式求函數(shù)的值域時(shí),須注意把其轉(zhuǎn)化為正數(shù)再求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一條斜率為1的直線l與離心率e=
2
2
的橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)交于P、Q兩點(diǎn),直線l與y軸交于點(diǎn)R,且
.
OP
.
OQ
=-3,
.
PR
=3
.
RQ
,求直線l和橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直角坐標(biāo)系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右頂點(diǎn)分別是A1,A2,上、下頂點(diǎn)為B2,B1,點(diǎn)P(
3
5
a
,m)(m>0)是橢圓C上一點(diǎn),PO⊥A2B2,直線PO分別交A1B1、A2B2于點(diǎn)M、N.
(1)求橢圓離心率;
(2)若MN=
4
21
7
,求橢圓C的方程;
(3)在(2)的條件下,設(shè)R點(diǎn)是橢圓C上位于第一象限內(nèi)的點(diǎn),F(xiàn)1、F2是橢圓C的左、右焦點(diǎn),RQ平分∠F1RF2且與y軸交于點(diǎn)Q,求點(diǎn)Q縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1的離心率為
3
2
,過橢圓C上一點(diǎn)P(2,1)作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于點(diǎn)A、B,直線AB與x軸交于點(diǎn)M,與y軸負(fù)半軸交于點(diǎn)N.
(Ⅰ)求橢圓C的方程:
(Ⅱ)若S△PMN=
3
2
,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左焦點(diǎn)為F1(-1,0),右焦點(diǎn)為F2(1,0),短軸兩個(gè)端點(diǎn)為A、B.與x軸不垂直的直線l與橢圓C交于不同的兩點(diǎn)M、N,記直線AM、AN的斜率分別為k1、k2,且k1k2=
3
2

(1)求橢圓C的方程;
(2)求證直線l與y軸相交于定點(diǎn),并求出定點(diǎn)坐標(biāo).
(3)當(dāng)弦MN的中點(diǎn)P落在△MF1F2內(nèi)(包括邊界)時(shí),求直線l的斜率的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點(diǎn)的坐標(biāo)分別為A(-2,0),B(2,0),離心率e=
1
2

(Ⅰ)求橢圓C的方程:
(Ⅱ)設(shè)橢圓的兩焦點(diǎn)分別為F1,F(xiàn)2,若直線l:y=k(x-1)(k≠0)與橢圓交于M、N兩點(diǎn),證明直線AM與直線BN的交點(diǎn)在直線x=4上.

查看答案和解析>>

同步練習(xí)冊答案