在數(shù)1和100之間插入n個實數(shù),使得這n+2個數(shù)構成遞增的等比數(shù)列,將這n+2個數(shù)的乘積記作Tn,再令

(Ⅰ)求數(shù)列{an}的通項公式;

(Ⅱ)設求數(shù)列{bn}的前n項和Sn

答案:
解析:

  解:(Ⅰ)設構成等比數(shù)列,其中

   、,

   、

  ①×②并利用

  

  (Ⅱ)由題意和(I)中計算結果,知

  另一方面,利用

  得所以

  


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在數(shù)1 和100之間插入n個實數(shù),使得這n+2個數(shù)構成遞增的等比數(shù)列,將這n+2個數(shù)的乘積計作Tn,再令an=lgTn,n≥1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=tanan•tanan+1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)1和100之間插入n個實數(shù),使得這n+2個數(shù)構成遞增的等比數(shù)列,將這n+2個數(shù)的乘積記作Tn,再令an=lgTn,n≥1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證:tan(k+1)•tank=
tan(k+1)-tanktan1
-1,k∈N*

(Ⅲ)設bn=tanan•tanan+1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在數(shù)1和100之間插入n個實數(shù),使得這n+2個數(shù)構成遞增的等比數(shù)列,將這n+2個數(shù)的乘積記作Tn,再令an=lgTn,(n∈N*),則數(shù)列{an}的通項公式是
 

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省高考真題 題型:解答題

在數(shù)1和100之間插入n個實數(shù),使得這n+2個數(shù)構成遞增的等比數(shù)列,將這n+2個數(shù)的乘積記作Tn,再令an =lgTn,n≥1。
(1)求數(shù)列{an}的通項公式;
(2)設bn=tanan·tanan+1,求數(shù)列{bn}的前n項和Sn。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省湛江市徐聞中學高三(上)第九周周考數(shù)學試卷(解析版) 題型:填空題

在數(shù)1和100之間插入n個實數(shù),使得這n+2個數(shù)構成遞增的等比數(shù)列,將這n+2個數(shù)的乘積記作Tn,再令an=lgTn,(n∈N*),則數(shù)列{an}的通項公式是   

查看答案和解析>>

同步練習冊答案