△ABC的外接圓的圓心為O,兩條邊上的高的交點(diǎn)為H,
OH
=m(
OA
+
OB
+
OC
)
,則實(shí)數(shù)m=
 
分析:根據(jù)題意作出圖形,由外心和垂心的性質(zhì)證明四邊形AHCD是平行四邊形,由向量加法的三角形法則得
OH
=
OA
+
AH
,由向量相等和向量的減法運(yùn)算進(jìn)行轉(zhuǎn)化,直到用
OA
OB
OC
表示出來為止.
解答:精英家教網(wǎng)解:如圖:作直徑BD,連接DA、DC,
由圖得,
OB
=-
OD
,
∵H為△ABC的垂心,∴CH⊥AB,AH⊥BC,
∵BD為直徑,∴DA⊥AB,DC⊥BC
∴CH∥AD,AH∥CD,故四邊形AHCD是平行四邊形,∴
AH
=
DC

又∵
DC
=
OC
-
OD
=
OC
+
OB
,
OH
=
OA
+
AH
=
OA
+
DC
=
OA
+
OB
+
OC
,對比系數(shù)得到m=1.
故答案為:1.
點(diǎn)評:本題考查了向量的線性運(yùn)算的應(yīng)用,一般的做法是根據(jù)圖形找一個封閉的圖形,利用向量的加法表示出來,再根據(jù)題意進(jìn)行轉(zhuǎn)化到用已知向量來表示,考查了轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知三點(diǎn)A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圓為圓,橢圓
x2
4
+
y2
2
=1
的右焦點(diǎn)為F.
(1)求圓M的方程;
(2)若點(diǎn)P為圓M上異于A、B的任意一點(diǎn),過原點(diǎn)O作PF的垂線交直線x=2
2
于點(diǎn)Q,試判斷直線PQ與圓M的位置關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•佛山一模)已知A(-2,0),B(2,0),C(m,n).
(1)若m=1,n=
3
,求△ABC的外接圓的方程;
(2)若以線段AB為直徑的圓O過點(diǎn)C(異于點(diǎn)A,B),直線x=2交直線AC于點(diǎn)R,線段BR的中點(diǎn)為D,試判斷直線CD與圓O的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(0,1),B,C是x軸上兩點(diǎn),且|BC|=6(B在C的左側(cè)).設(shè)△ABC的外接圓的圓心為M.
(Ⅰ)已知
AB
AC
=-4
,試求直線AB的方程;
(Ⅱ)當(dāng)圓M與直線y=9相切時,求圓M的方程;
(Ⅲ)設(shè)|AB|=l1,|AC|=l2,s=
l1
l2
+
l2
l1
,試求s的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•朝陽區(qū)一模)如圖,圓O是△ABC的外接圓,過點(diǎn)C作圓O的切線交BA的延長線于點(diǎn)D.若CD=
3
,AB=AC=2,則線段AD的長是
1
1
;圓O的半徑是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市房山區(qū)良鄉(xiāng)中學(xué)高三數(shù)學(xué)會考模擬試卷(4)(解析版) 題型:解答題

已知點(diǎn)A(0,1),B,C是x軸上兩點(diǎn),且|BC|=6(B在C的左側(cè)).設(shè)△ABC的外接圓的圓心為M.
(Ⅰ)已知,試求直線AB的方程;
(Ⅱ)當(dāng)圓M與直線y=9相切時,求圓M的方程;
(Ⅲ)設(shè)|AB|=l1,|AC|=l2,,試求s的最大值.

查看答案和解析>>

同步練習(xí)冊答案