分析 (1)推導(dǎo)出BM⊥AM,AD⊥BM,從而BM⊥平面ADM,由此能證明平面ADM⊥平面ABCM.
(2)以M為原點(diǎn),MA為x軸,MB為y軸,過M作平面ABCM的垂線為z軸,建立空間直角坐標(biāo)系,利用向量法能求出存在滿足$\overrightarrow{BE}=t\overrightarrow{BD}({0<t<1})$的點(diǎn)E,使得二面角E-AM-D為大小為$\frac{π}{4}$,并能求出相應(yīng)的實(shí)數(shù)t的值.
解答 證明:(1)∵長方形ABCD中,AB=2AD=2$\sqrt{2}$,M為DC的中點(diǎn),
∴AM=BM=2,AM2+BM2=AB2,∴BM⊥AM,
∵AD⊥BM,AD∩AM=A,∴BM⊥平面ADM,
又BM?平面ABCM,∴平面ADM⊥平面ABCM.
解:(2)以M為原點(diǎn),MA為x軸,MB為y軸,過M作平面ABCM的垂線為z軸,
建立空間直角坐標(biāo)系,
則A(2,0,0),B(0,2,0),D(1,0,1),M(0,0,0),
$\overrightarrow{MB}$=(0,2,0),$\overrightarrow{BD}$=(1,-2,1),$\overrightarrow{ME}$=$\overrightarrow{MB}+\overrightarrow{BE}$=(t,2-2t,1),
設(shè)平面AME的一個法向量為$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{MA}•\overrightarrow{m}=2x=0}\\{\overrightarrow{ME}•\overrightarrow{m}=tx+(2-2t)y+tz=0}\end{array}\right.$,
取y=t,得$\overrightarrow{m}$=(0,t,2t-2),
由(1)知平面AMD的一個法向量$\overrightarrow{n}$=(0,1,0),
∵二面角E-AM-D為大小為$\frac{π}{4}$,
∴cos$\frac{π}{4}$=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{t}{\sqrt{{t}^{2}+4(t-1)^{2}}}$=$\frac{\sqrt{2}}{2}$,
解得t=$\frac{2}{3}$或t=2(舍),
∴存在滿足$\overrightarrow{BE}=t\overrightarrow{BD}({0<t<1})$的點(diǎn)E,使得二面角E-AM-D為大小為$\frac{π}{4}$,相應(yīng)的實(shí)數(shù)t的值為$\frac{2}{3}$.
點(diǎn)評 本題考查面面垂直的證明,考查滿足二面角的大小的實(shí)數(shù)值是否存在的判斷與求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$⊥$\overrightarrow$ | B. | $\overrightarrow{a}$∥$\overrightarrow$ | C. | $\overrightarrow{a}$=-2$\overrightarrow$ | D. | $\overrightarrow{a}$=2$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1-2i | B. | -1+2i | C. | 2-i | D. | 2+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com