【題目】已知圓過兩點(diǎn), ,且圓心在直線上.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)直線過點(diǎn)且與圓有兩個(gè)不同的交點(diǎn),若直線的斜率大于0,求的取值范圍.
【答案】(I)(x﹣1)2+y2=25 (II)( ,+∞)
【解析】試題分析:(1)由,可得的垂直平分線方程,和已知直線方程
聯(lián)立解得圓心坐標(biāo),再由求出半徑,即可求得圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的方程為: 即,設(shè)到直線的距離為,由圓心到直線的距離小于半徑列不等式,即可求得的取值范圍.
試題解析:(I)MN的垂直平分線方程為:x﹣2y﹣1=0與2x﹣y﹣2=0聯(lián)立解得圓心坐標(biāo)為C(1,0)
R2=|CM|2=(﹣3﹣1)2+(3﹣0)2=25
∴圓C的標(biāo)準(zhǔn)方程為:(x﹣1)2+y2=25
(II)設(shè)直線的方程為:y﹣5=k(x+2)即kx﹣y+2k+5=0,設(shè)C到直線l的距離為d,
則d=
由題意:d<5
即:8k2﹣15k>0
∴k<0或k>
又因?yàn)閗>0
∴k的取值范圍是(,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABOA′B′O′中,∠AOB=90°,側(cè)棱OO′⊥面OAB,OA=OB=OO′=2.若C為線段O′A的中點(diǎn),在線段BB′上求一點(diǎn)E,使|EC|最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等差數(shù)列{an}中,a1 =-2,a12 =20.
(1)求數(shù)列{an}的通項(xiàng)an ;
(2)若bn=,求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=sin(x﹣30°)+cos(x﹣60°),g(x)=2sin2 .
(1)若α為第一象限角且f(α)= ,求g(α)之值;
(2)求f(x﹣1080°)≥g(x)在[0,360°]內(nèi)的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(x﹣ )cos(x﹣ )(x∈R),則下面結(jié)論錯(cuò)誤的是( )
A.函數(shù)f(x)的圖象關(guān)于點(diǎn)(﹣ ,0)對(duì)稱
B.函數(shù)f(x)的圖象關(guān)于直線x=﹣ 對(duì)稱
C.函數(shù)f(x)在區(qū)間[0, ]上是增函數(shù)
D.函數(shù)f(x)的圖象是由函數(shù)y= sin2x的圖象向右平移 個(gè)單位而得到
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以點(diǎn)C為圓心的圓經(jīng)過點(diǎn)A(﹣1,0)和B(3,4),且圓心在直線x+3y﹣15=0上.
(1)求圓C的方程;
(2)設(shè)點(diǎn)P在圓C上,求△PAB的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)P是圓上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為線段PD上一點(diǎn),且,
(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)求過點(diǎn)(3,0)且斜率為的直線被軌跡C所截線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖像在點(diǎn)處的切線方程為.
(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),比較與(為自然對(duì)數(shù)的底數(shù))的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com