已知f(x)=3([x]+3)2-2,其中[x]表示不超過(guò)x的最大整數(shù),如[3.1]=3,則f(-3.5)=(  )
分析:根據(jù)[x]的定義求出[-3.5]的值,代入解析式求解.
解答:解:根據(jù)題意得,[-3.5]=-4,
則f(-3.5)=3([-3.5]+3)2-2=3-2=1,
故選C.
點(diǎn)評(píng):本題考查了利用新定義求函數(shù)值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
(3-a)x-3,(x<7)
ax-6,(x≥7)
,若函數(shù)f(x)在R上單調(diào)遞增,那么實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
3+x
1+x2
,0≤x≤3
f(3)  ,x>3
,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的方程f(x)-a=0恰有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=3-4x+2xln2,數(shù)列{an}滿(mǎn)足:-
1
2
a1<0
,21+an+1=f(an),(n∈N*).
(1)求證:-
1
2
an<0
(n∈N*).
(2)判斷an與an+1(n∈N*)的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
(3-a)x-4a  (x<1)
x2            (x≥1)
是R上的增函數(shù),那么a的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案