【題目】某校為了解校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”“不合格”兩個(gè)等級(jí),同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如下:
等級(jí) | 不合格 | 合格 | ||
得分 | ||||
頻數(shù) | 6 | a | 24 | b |
(1)由該題中頻率分布直方圖求測(cè)試成績(jī)的平均數(shù)和中位數(shù);
(2)其他條件不變?cè)谠u(píng)定等級(jí)為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測(cè)試得分低于80分的前提下,第2次抽取的測(cè)試得分仍低于80分的概率;
(3)用分層抽樣的方法,從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再?gòu)倪@10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.
【答案】(1)64,65;(2);(3).
【解析】
(1)先求出的值,再利用頻率分布直方圖平均數(shù)和中位數(shù)的公式求解;
(2)“第1次抽取的測(cè)試得分低于80分”為事件A,“第2次抽取的測(cè)試得分低于80分”為事件B,再利用條件概率求解;
(3)由題意可得的所有可能取值為0,5,10,15,20,再求出其對(duì)應(yīng)的概率,即得的分布列和數(shù)學(xué)期望.
由題意知,樣本容量為,,
,.
(1)平均數(shù)為,
設(shè)中位數(shù)為x,
因?yàn)?/span>,,
所以,則,
解得.
(2)由題意可知,分?jǐn)?shù)在內(nèi)的學(xué)生有24人,分?jǐn)?shù)在內(nèi)的學(xué)生有12人.設(shè)“第1次抽取的測(cè)試得分低于80分”為事件A,“第2次抽取的測(cè)試得分低于80分”為事件B,
則,,所以.
(3)在評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中用分層抽樣的方法抽取10人,則“不合格”的學(xué)生人數(shù)為,“合格”的學(xué)生人數(shù)為.
由題意可得的所有可能取值為0,5,10,15,20
,,,
,.
所以的分布列為
0 | 5 | 10 | 15 | 20 | |
P |
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】剪紙藝術(shù)是最古老的中國(guó)民間藝術(shù)之一,作為一種鏤空藝術(shù),它能給人以視覺上以透空的感覺和藝術(shù)享受.在中國(guó)南北方的剪紙藝術(shù),通過一把剪刀、一張紙、就可以表達(dá)生活中的各種喜怒哀樂.如圖是一邊長(zhǎng)為1的正方形剪紙圖案,中間黑色大圓與正方形的內(nèi)切圓共圓心,圓與圓之間是相切的,且中間黑色大圓的半徑是黑色小圓半徑的2倍,若在正方形圖案上隨機(jī)取一點(diǎn),則該點(diǎn)取自白色區(qū)域的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列(任意項(xiàng)都不為零)的前項(xiàng)和為,首項(xiàng)為,對(duì)于任意,滿足.
(1)數(shù)列的通項(xiàng)公式;
(2)是否存在使得成等比數(shù)列,且成等差數(shù)列?若存在,試求的值;若不存在,請(qǐng)說明理由;
(3)設(shè)數(shù)列,,若由的前項(xiàng)依次構(gòu)成的數(shù)列是單調(diào)遞增數(shù)列,求正整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:的左、右頂點(diǎn)分別為右焦點(diǎn)為,右準(zhǔn)線l的方程為,過焦點(diǎn)F的直線與橢圓C相交于點(diǎn)A,B(不與點(diǎn)重合).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線AB的傾斜角為45°時(shí),求弦AB的長(zhǎng);
(3)設(shè)直線交l于點(diǎn)M,求證:B,,M三點(diǎn)共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,是等邊三角形,,,.
(1)若,求三棱錐的體積;
(2)若,則在線段上是否存在一點(diǎn),使平面平面.若存在,求線段的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極大值為,其中為自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)的值;
(2)若函數(shù),對(duì)任意,恒成立.
(i)求實(shí)數(shù)的取值范圍;
(ii)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)數(shù)列、,當(dāng)和同時(shí)在時(shí)取得相同的最大值,我們稱與具有性質(zhì),其中.
(1)設(shè)的二項(xiàng)展開式中的系數(shù)為(),,記,,,依次下去,,組成的數(shù)列是;同樣地,的二項(xiàng)展開式中的系數(shù)為(),,記,,,依次下去,,組成的數(shù)列是;判別與是否具有性質(zhì),請(qǐng)說明理由;
(2)數(shù)列的前項(xiàng)和是,數(shù)列的前項(xiàng)和是,若與具有性質(zhì),,則這樣的數(shù)列一共有多少個(gè)?請(qǐng)說明理由;
(3)兩個(gè)有限項(xiàng)數(shù)列與滿足,,且,是否存在實(shí)數(shù),使得與具有性質(zhì),請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省2020年高考將實(shí)施新的高考改革方案.考生的高考總成績(jī)由3門統(tǒng)一高考科目成績(jī)和自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目成績(jī)組成,總分為750分.其中,統(tǒng)一高考科目為語(yǔ)文、數(shù)學(xué)、外語(yǔ),自主選擇的3門普通高中學(xué)業(yè)水平等級(jí)考試科目是從物理、化學(xué)、生物、政治、歷史、地理6科中選擇3門作為選考科目,語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科各占150分,選考科目成績(jī)采用“賦分制”,即原始分?jǐn)?shù)不直接用,而是按照學(xué)生分?jǐn)?shù)在本科目考試的排名來劃分等級(jí)并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級(jí)考試科目中考生的原始成績(jī)從高到低分為,,,,,,,共8個(gè)等級(jí).參照正態(tài)分布原則,確定各等級(jí)人數(shù)所占比例分別為3%,7%,16%,24%,24%,16%,7%,3%.等級(jí)考試科目成績(jī)計(jì)入考生總成績(jī)時(shí),將至等級(jí)內(nèi)的考生原始成績(jī),依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91~100,81~90,71~80,61~70,51~60,41~50,31~40,21~30八個(gè)分?jǐn)?shù)區(qū)間,得到考生的等級(jí)成績(jī).舉例說明:某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科等級(jí)的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績(jī)屬等級(jí).而等級(jí)的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分計(jì)算方法為:設(shè)該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換等級(jí)分為,,求得.四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績(jī)?yōu)?/span>67.為給高一學(xué)生合理選科提供依據(jù),全省對(duì)六個(gè)選考科目進(jìn)行測(cè)試,某校高一年級(jí)2000人,根據(jù)該校高一學(xué)生的物理原始成績(jī)制成頻率分布直方圖(見右圖).由頻率分布直方圖,可以認(rèn)為該校高一學(xué)生的物理原始成績(jī)服從正態(tài)分布,用這2000名學(xué)生的平均物理成績(jī)作為的估計(jì)值,用這2000名學(xué)生的物理成績(jī)的方差作為的估計(jì)值.
(1)若張明同學(xué)在這次考試中的物理原始分為86分,等級(jí)為,其所在原始分分布區(qū)間為82~93,求張明轉(zhuǎn)換后的物理成績(jī)(精確到1);按高考改革方案,若從全省考生中隨機(jī)抽取100人,記表示這100人中等級(jí)成績(jī)?cè)趨^(qū)間內(nèi)的人數(shù),求最有可能的取值(概率最大);
(2)①求,(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)作代表);
②由①中的數(shù)據(jù),記該校高一學(xué)生的物理原始分高于84分的人數(shù)為,求.
附:若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù),設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)對(duì)任意均有 求的取值范圍.
注:為自然對(duì)數(shù)的底數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com