精英家教網 > 高中數學 > 題目詳情
圓O1是以R為半徑的球O的小圓,若圓心O1到球心O的距離與球半徑面積S1和球O的表面積S的比為S1:S=2:9,則圓心O1到球心O的距離與球半徑的比OO1:R=______.
設圓O1的半徑為r,
則S1=πr2,S=4πR2,
由S1:S=2:9得r:R=2
2
:3
又r2+OO12=R2,
可得OO1:R=1:3
故答案為:1:3
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

圓O1是以R為半徑的球O的小圓,若圓心O1到球心O的距離與球半徑面積S1和球O的表面積S的比為S1:S=2:9,則圓心O1到球心O的距離與球半徑的比OO1:R=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓O1是以R為半徑的球O的一個小圓,且圓O1的面積S1與球的表面積S的比值為S1∶S=2∶9,則圓心O1到球心O的距離與球半徑的比OO1∶R=_______.

查看答案和解析>>

科目:高中數學 來源:2006年全國統(tǒng)一高考數學試卷Ⅱ(文科)(解析版) 題型:解答題

圓O1是以R為半徑的球O的小圓,若圓心O1到球心O的距離與球半徑面積S1和球O的表面積S的比為S1:S=2:9,則圓心O1到球心O的距離與球半徑的比OO1:R=   

查看答案和解析>>

科目:高中數學 來源: 題型:

圓O1是以R為半徑的球O的小圓,若圓O1的面積S1和球O的表面積S的比為S1:S=2:9,則圓心O1到球心O的距離與球半徑的比OO1:R=_____。

查看答案和解析>>

同步練習冊答案