精英家教網 > 高中數學 > 題目詳情
在平面直角坐標系xOy中,曲線y=x-6x+1與坐標軸的交點都在圓C上.
(Ⅰ)求圓C的方程;
(Ⅱ)試判斷是否存在斜率為1的直線,使其與圓C交于A, B兩點,且OA⊥OB,若存在,求出該直線方程,若不存在,請說明理由.
(Ⅰ).(Ⅱ)該直線存在,其方程為.

試題分析:(Ⅰ)曲線軸的交點為
軸的交點為,
故可設的圓心為,
則有,
解得
則圓的半徑為,
所以圓的方程為               4分
(Ⅱ)假設直線存在,依題意,設直線方程為,
并設,
,消去
得到方程
由已知可得,判別式
因此,
從而,   ①
由于,可得
,
所以    ②
由①,②得,滿足
所以該直線存在,其方程為           8分
點評:中檔題,中檔題,曲線關系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。恰當的運用圓中的“特征三角形”,轉化成點到直線的距離問題,更為簡潔。對存在性問題,常常是先假設存在,應用已知條件,確定其存在性,達到解體目的。本題較難。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知拋物線與雙曲線有公共焦點,點是曲線在第一象限的交點,且
(Ⅰ)求雙曲線的方程;
(Ⅱ)以雙曲線的另一焦點為圓心的圓與直線相切,圓.過點作互相垂直且分別與圓、圓相交的直線,設被圓截得的弦長為,被圓截得的弦長為,問:是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C:的離心率為
直線:y=x+2與原點為圓心,以橢圓C的短軸長為直
徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點的直線與橢圓交于兩點.設直線的斜率,在軸上是否存在點,使得是以GH為底邊的等腰三角形. 如果存在,求出實數的取值范圍,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知△的兩個頂點的坐標分別是,且所在直線的斜率之積等于
(Ⅰ)求頂點的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當時,過點的直線交曲線兩點,設點關于軸的對稱
點為(不重合) 試問:直線軸的交點是否是定點?若是,求出定點,若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知動圓過定點A(4,0), 且在y軸上截得的弦MN的長為8.
(Ⅰ) 求動圓圓心的軌跡C的方程;
(Ⅱ) 已知點B(-1,0), 設不垂直于x軸的直線l與軌跡C交于不同的兩點P, Q, 若x軸是的角平分線, 證明直線l過定點.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個焦點分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經過點
(I)求橢圓C的離心率:
(II)設過點A(0,2)的直線l與橢圓C交于M,N兩點,點Q是線段MN上的點,且,求點Q的軌跡方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

極坐標系與直角坐標系xOy有相同的長度單位,以原點D為極點,以x軸正半軸為極軸,曲線Cl的極坐標方程為,曲線C2的參數方程為為參數)。
(1)當時,求曲線Cl與C2公共點的直角坐標; 
(2)若,當變化時,設曲線C1與C2的公共點為A,B,試求AB中點M軌跡的極坐標方程,并指出它表示什么曲線.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知直線與平面平行,P是直線上的一定點,平面內的動點B滿足:PB與直線 。那么B點軌跡是 (    )                          
A.橢圓B.雙曲線C.拋物線D.兩直線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點是直角坐標平面內的動點,點到直線(是正常數)的距離為,到點的距離為,且1.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B,分別過A、B點作直線的垂線,對應的垂足分別為,求證=
(3)記,
(A、B、是(2)中的點),,求的值.

查看答案和解析>>

同步練習冊答案