若平面向量
a
b
滿足:|
a
+2
b
|≤3,則
a
b
的最大值是
9
8
9
8
分析:由條件可得 
a
2
+4
a
b
+4
b
2
≤9,再利用基本不等式求得9≥4
a
b
+4 |
a
|•|
b
|
≥8
a
b
,由此可得
a
b
的最大值.
解答:解:∵平面向量
a
,
b
滿足:|
a
+2
b
|≤3,∴
a
2
+4
a
b
+4
b
2
≤9.
∴9≥4
a
b
+2
a
2
•4
b
 
2
=4
a
b
+4 |
a
|•|
b
|
≥8
a
b
,
a
b
9
8
,故
a
b
的最大值為
9
8

故答案為
9
8
點(diǎn)評(píng):本題考查平面向量數(shù)量積的坐標(biāo)表示,基本不等式的應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�