已知:a>0,b>0,a+b=1,求證:

答案:
解析:

  證:只須證明≤82a+1+2b+1+≤8≤2(2a+1)(2b+1)≤4ab≤

  ∵.∴ab≤成立.故原不等式成立


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知:a>0,b>0,且a+b=1.求證
1
a
+
1
b
≥4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log
1
2
x
與函數(shù)g(x)的圖象關于y=x對稱,
(1)若g(a)g(b)=2,且a<0,b<0,則
4
a
+
1
b
的最大值為
-9
-9

(2)設f(x)是定義在R上的偶函數(shù),對任意的x∈R,都有f(2-x)=f(x+2),且當x∈[-2,0]時,f(x)=g(x)-1,若關于x的方程f(x)-lo
g
(x+2)
a
=0(a>1)在區(qū)間(-2,6]內恰有三個不同實根,則實數(shù)a的取值范圍是
(
34
,2)
(
34
,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從一箱產品中隨機地抽取一件,設事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.則事件“抽到的是二等品或三等品”的概率為(  )

A.0.7                                  B.0.65

C.0.35                                 D.0.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)

在平面直角坐標系xOy中,已知點A(-1, 0)、B(1, 0), 動點C滿足條件:△ABC的周長為2+2.記動點C的軌跡為曲線W.

(Ⅰ)求W的方程;

(Ⅱ)經過點(0, )且斜率為k的直線l與曲線W 有兩個不同的交點PQ,已知點M(,0),

N(0, 1),是否存在常數(shù)k,使得向量共線?如果存在,求出k的值;如果不存在,

請說明理由.

  

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)

在平面直角坐標系xOy中,已知點A(-1, 0)、B(1, 0), 動點C滿足條件:△ABC的周長為2+2.記動點C的軌跡為曲線W.

(Ⅰ)求W的方程;

(Ⅱ)經過點(0, )且斜率為k的直線l與曲線W 有兩個不同的交點PQ,已知點M(,0),

N(0, 1),是否存在常數(shù)k,使得向量共線?如果存在,求出k的值;如果不存在,

請說明理由.

  

查看答案和解析>>

同步練習冊答案