設(shè)△ABC的內(nèi)角A,B,C的對應(yīng)邊分別為a,b,c.已知角A是銳角且cos2B-cos2A=2sin(
π
3
+B
)sin(
π
3
-B

(I )求角A的大。
(II)試確定滿足條件a=2
2
,b=3的△ABC的個數(shù).
(I)∵cos2B-cos2A=2sin(
π
3
+B
)sin(
π
3
-B
),
且cos2B-cos2A=2cos2B-1-cos2A,
2sin(
π
3
+B
)sin(
π
3
-B
)=2(
3
2
cosB+
1
2
sinB)(
3
2
cosB-
1
2
sinB)
=2(
3
4
cos2B-
1
4
sin2B)=
3
2
cos2B-
1
2
sin2B,
∴2cos2B-1-cos2A=
3
2
cos2B-
1
2
sin2B,
整理得cos2A=
1
2
(cos2B+sin2B)-1=-
1
2
,
∵A為銳角,∴2A∈(0,π),
∴2A=
3
,
∴A=
π
3
;
(II)∵a=2
2
,b=3,sinA=
3
2
,
∴由正弦定理
a
sinA
=
b
sinB
得:sinB=
bsinA
a
=
3
2
2
2
=
3
6
8

∵a<b,∴A<B,
∴角B為銳角或鈍角,
則滿足條件的△ABC有兩個.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3
2
sin2x-cos2-
1
2
,(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=
3
,f(C)=0,若
m
=(1,sinA)與
n
=(2,sinB)共線,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c.若b=
3
,c=1,B=60°
,則角C=
 
°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c
(1)求證:acosB+bcosA=c;
(2)若acosB-bcosA=
3
5
c,試求
tanA
tanB
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
2
sin2x-cos2x-
1
2
,x∈R.
(Ⅰ)若x∈[
5
24
π,
3
4
π]
,求函數(shù)f(x)的最大值和最小值,并寫出相應(yīng)的x的值;
(Ⅱ)設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,滿足c=
3
,f(C)=0,且sinB=2sinA,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,
(1)若a=1,b=2,cosC=
1
4
,求△ABC的周長;
(2)若直線l:
x
a
+
y
b
=1
恒過點D(1,4),求u=a+b的最小值.

查看答案和解析>>

同步練習(xí)冊答案