已知點(diǎn)P,Q,R分別在三棱錐S-ABC的三條側(cè)棱SA,SB,SC上,且PQ與AB交于點(diǎn)D,PR與AC交于點(diǎn)E,RQ與BC交于點(diǎn)F,求證:D,E,F(xiàn)三點(diǎn)共線.
考點(diǎn):平面的基本性質(zhì)及推論
專題:證明題,空間位置關(guān)系與距離
分析:確定平面PDE∩平面ABC=DE,F(xiàn)∈平面PDE,F(xiàn)∈平面ABC,即可證明結(jié)論.
解答: 證明:由題意,D,E確定直線,且平面PDE∩平面ABC=DE,
∵F∈QR,QR?平面PDE,
∴F∈平面PDE,
同理F∈平面ABC,
∴F∈DE,
∴D,E,F(xiàn)三點(diǎn)共線.
點(diǎn)評(píng):本題考查平面基本性質(zhì),考查學(xué)生分析解決問(wèn)題的能力,正確運(yùn)用平面基本性質(zhì)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確命題的個(gè)數(shù)為( 。
①N中最小的元素是1
②若a∈N,則-a∉N
③若a∈N,b∈N,則a+b的最小值是2.
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=2,∠A=60°,F(xiàn)為AB的中點(diǎn),且CF2=AC•BC,求AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y=x2的動(dòng)弦為EF,分別過(guò)E,F(xiàn)作其切線,兩切線交于C點(diǎn),已知
FC
=
CP
CE
=
EQ

(1)求證:直線PQ也與拋物線相切.
(2)若PQ切拋物線于G點(diǎn),求
S△GEF
S△PCQ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax,g(x)=bx3+x.
(1)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)C(1,m)處具有公共切線,求實(shí)數(shù)m的值;
(2)當(dāng)b=
1
3
,a=-4時(shí),求函數(shù)F(x)=f(x)+g(x)在區(qū)間[-3,4]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1、F2為左右焦點(diǎn),A為右頂點(diǎn),l為左準(zhǔn)線,過(guò)F1的直線l′:x=my-c與橢圓相交于P、Q兩點(diǎn),且有:
AP
AQ
=
1
2
(a+c)2
(1)求橢圓C的離心率;
(2)若e∈(
1
2
,
2
3
),求m的取值范圍;
(3)若AP∩l=M,AQ∩l=N,求證:M、N點(diǎn)的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)正方體,它的表面涂滿了紅色.在它的每個(gè)面上切兩刀可得27個(gè)小立方塊,從中任取兩個(gè),其中恰有1個(gè)一面涂有紅色,1個(gè)兩面涂有紅色的概率為( 。
A、
16
117
B、
32
117
C、
8
39
D、
16
39

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且AB、CD均與水平面垂直,它們的高度分別是9m和15m,從建筑物AB的頂部A看點(diǎn)D的仰角為α,看點(diǎn)C的俯角為β,已知α+β=45°,則BC的長(zhǎng)度是
 
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,y=f(x-2)是偶函數(shù),且f(x)在[-4,-2]上是增函數(shù),則f(-3.5),f(-1),f(0)的大小關(guān)系為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案