精英家教網 > 高中數學 > 題目詳情
已知二次函數f(x)=x2+bx+c(b、c∈R),不論α、β為何實數,恒有f(sinα)≥0,f(2+cosβ)≤0.
(1)求證:b+c=-1;
(2)求證:c≥3;
(3)若函數f(sinα)的最大值為8,求b、c的值.
【答案】分析:本題考查的是不等式的綜合應用問題.在解答時:
(1)充分利用條件不論α、β為何實數,恒有f(sinα)≥0,f(2+cosβ)≤0.注意分析sinα、2+cosβ的范圍,利用夾逼的辦法即可獲得問題的解答;
(2)首先利用(1)的結論對問題進行化簡化為只有參數c的函數,再結合條件不論β為何實數,恒有f(2+cosβ)≤0,即可獲得問題的解答;
(3)首先對函數進行化簡配方,然后利用二次函數的性質結合自變量和對稱軸的范圍即可獲得問題的解答.
解答:解:(1)證明:∵|sinα|≤1且f(sinα)≥0恒成立,可得f(1)≥0.
又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立,可得f(1)≤0,
∴f(1)=0,
∴1+b+c=0,∴b+c=-1.
(2)證明:∵b+c=-1,∴b=-1-c,
∴f(x)=x2-(1+c)x+c=(x-1)(x-c).
又∵1≤2+cosβ≤3且f(2+cosβ)≤0恒成立
∴x-c≤0,即c≥x恒成立.
∴c≥3.
(3)∵f(sinα)=sin2α-(1+c)sinα+c=(sinα-2+c-(2,

∴當sinα=-1時,f(sinα)的最大值為1-b+c.
由1-b+c=8與b+c=-1聯立,
可得b=-4,c=3.
即b=-4,c=3.
點評:本題考查的是不等式的綜合類問題,在解答的過程當中充分體現了夾逼的技巧、恒成立的思想以及數形結合的思想.值得同學們體會與反思.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2+2(m-2)x+m-m2
(I)若函數的圖象經過原點,且滿足f(2)=0,求實數m的值.
(Ⅱ)若函數在區(qū)間[2,+∞)上為增函數,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=ax2+bx+c(a≠0)的圖象過點(0,1),且與x軸有唯一的交點(-1,0).
(Ⅰ)求f(x)的表達式;
(Ⅱ)設函數F(x)=f(x)-kx,x∈[-2,2],記此函數的最小值為g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2-16x+q+3.
(1)若函數在區(qū)間[-1,1]上存在零點,求實數q的取值范圍;
(2)若記區(qū)間[a,b]的長度為b-a.問:是否存在常數t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且D的長度為12-t?請對你所得的結論給出證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣州一模)已知二次函數f(x)=x2+ax+m+1,關于x的不等式f(x)<(2m-1)x+1-m2的解集為(m,m+1),其中m為非零常數.設g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值時,函數φ(x)=g(x)-kln(x-1)存在極值點,并求出極值點;
(3)若m=1,且x>0,求證:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)已知二次函數f(x)的圖象與x軸的兩交點為(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函數f(x)的圖象的頂點是(-1,2),且經過原點,求f(x)的解析式.

查看答案和解析>>

同步練習冊答案