2.已知集合A={x|x2-x-2<0},B={x|x>log2m},若A⊆B,則實數(shù)m的取值范圍是(  )
A.(0,4]B.($\frac{1}{2}$,1]C.(0,$\frac{1}{2}$]D.(-∞,$\frac{1}{2}$]

分析 先解二次不等式求出集合A,再由A⊆B的關(guān)系,可得出關(guān)于m的不等式,即可求得m的范圍.

解答 解:由x2-x-2<0,解得-1<x<2,
故A={x|-1<x<2}.
又∵B={x|x>log2m},A⊆B,則log2m≤-1,
即0<m≤$\frac{1}{2}$,
故選:C.

點評 本題考查一元二次不等式,考查集合的包含關(guān)系判斷及應(yīng)用,考查分析、運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{2\sqrt{2}}{3}$,且點(1,$\frac{2\sqrt{2}}{3}$)在橢圓上,經(jīng)過橢圓的左頂點A作斜率為k(k≠0)的直線l交橢圓C于點D,交y軸于點E.
(1)求橢圓C的方程;
(2)已知點P為線段AD的中點,OM∥l,并且OM交橢圓C于點M.
(i)是否存在點Q,對于任意的k(k≠0)都有OP⊥EQ?若存在,求出點Q的坐標,若不存在,請說明理由;
(ii)求$\frac{|AD|+|AE|}{|OM|}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.從5臺甲型和4臺乙型電視機中任意取出3臺,其中至少要有甲型與乙型電視機各1臺,則不同的取法共有70種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在平面直角坐標系xOy中,圓O:x2+y2=4,橢圓M:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1(0<b<2),A為橢圓右頂點,過原點O且異于坐標軸的直線與橢圓M交于B,C兩點,直線AB與圓O的另一交點為P,直線PD與圓O的另一交點為Q,其中D(-$\frac{6}{5}$,0).設(shè)直線AB,AC的斜率分別為k1,k2,且k1k2=-$\frac{1}{4}$.
(1)求橢圓M的方程;
(2)記直線PQ,BC的斜率分別為kPQ,kBC,是否存在常數(shù)λ,使得kPQ=λkBC?若存在,求λ值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在矩形ABCD中,AB=2,BC=1,O為AB邊的中點,若在該矩形內(nèi)隨機取一點,則取到的點與O點的距離不大于1的概率為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+3x+a是奇函數(shù),且函數(shù)g(x)=|f(x)-k|-1有兩個零點,則實數(shù)k的取值范圍是(  )
A.(-∞,-3)B.(1,+∞)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.執(zhí)行如圖所示的程序框圖,已知命題p:?k∈[4,6],輸出S的值為30;命題q:?k∈(4,5),輸出S的值為14,則下列命題正確的是( 。
A.qB.p∧qC.(¬p)∨qD.p(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y≥0}\\{0<y≤2}\end{array}\right.$,則z=$\frac{y+1}{x+5}$的取值范圍是($\frac{1}{5}$,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=3sin$\frac{x}{2}cos\frac{x}{2}+4co{s}^{2}\frac{x}{2}$(x∈R)的最大值等于( 。
A.5B.$\frac{9}{2}$C.$\frac{5}{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案