解:(1)當(dāng)時(shí),函數(shù)解析式為,定義域?yàn)椋ī?,+∞)
∴對(duì)函數(shù)求導(dǎo)數(shù),得,
令,解得或
當(dāng)x變化時(shí),f'(x),f(x)的變化情況如下表:
(2)因?yàn)閒(x)=x2+bln(x+1)﹣2x,
所以 ,其中x∈(﹣1,+∞)
因?yàn)閎≥2,所以f'(x)≥0(當(dāng)且僅當(dāng)b=2,x=0時(shí)等號(hào)成立),
所以f(x)在區(qū)間(﹣1,+∞)上是增函數(shù),
從而對(duì)任意x1,x2∈(﹣1,+∞),
當(dāng)x1≥x2時(shí),f(x1)≥f(x2),
又∵g(x)=f(x)+2x,
∴g(x1)=f(x1)+2x1,g(x2)=f(x2)+2x2
即g(x1)+2x1≥g(x2)+2x2,整理得g(x1)﹣g(x2)≥2(x1﹣x2)
所以對(duì)任意x1,x2∈(﹣1,+∞),且x1≥x2,
都有g(shù)(x1)﹣g(x2)≥2(x1﹣x2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com