【答案】
分析:(I)求導(dǎo)數(shù),確定函數(shù)的單調(diào)性,求得函數(shù)的最大值,即可證得結(jié)論;
(II)f′(x)=-(ax+a-1)e
x+1-a,f(0)=f′(0)=0,設(shè)g(x)=f′(x),則g′(x)=(ax+2a-1)e
x,分類討論,確定函數(shù)的單調(diào)性,即可求a的取值范圍.
解答:(I)證明:當(dāng)a=0時,f(x)=-e
x+x+1,則f′(x)=-e
x+1
令f′(x)=0,可得x=0
令f′(x)<0,可得x<0,令f′(x)>0,可得x>0
∴函數(shù)f(x)在(-∞,0)上單調(diào)遞增,在(0,+∞)單調(diào)遞減
∴f(x)
max=f(0)=0
∴f(x)≤0;
(II)f′(x)=-(ax+a-1)e
x+1-a,f(0)=f′(0)=0,
設(shè)g(x)=f′(x),則g′(x)=(ax+2a-1)e
x,
①a≤0,x∈(0,+∞)時,g′(x)<0,∴g(x)在(0,+∞)上為減函數(shù),
∵f′(0)=0,∴f′(x)<0,∴f(x)在(0,+∞)上為減函數(shù),
∴f(x)<f(0)=0與已知矛盾;
②當(dāng)0<a<
,x∈(0,
)時,g′(x)<0,則g(x)在(0,
)上為減函數(shù),此時f′(x)<0,∴f(x)在(0,
)上為減函數(shù),∴f(x)<f(0)=0與已知矛盾;
③當(dāng)a≥
,x∈(0,+∞)時,g′(x)>0,即f′(x)在(0,+∞)上為增函數(shù),
∴f′(x)≥f′(0)=0
∴f(x)在(0,+∞)上為增函數(shù),∴f(x)>f(0)=0,不等式成立
綜上,a≥
.
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性與最值,考查分類討論的數(shù)學(xué)思想,屬于中檔題.