(本小題滿分13分)
如圖,已知橢圓:的一個焦點是(1,0),兩個焦點與短軸的一個端點構(gòu)成等邊三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(4,0)且不與坐標(biāo)軸垂直的直線交橢圓于、兩點,設(shè)點關(guān)于軸的對稱點為.
(ⅰ)求證:直線過軸上一定點,并求出此定點坐標(biāo);
(ⅱ)求△面積的取值范圍.
解:(Ⅰ)因為橢圓的一個焦點是(1,0),所以半焦距=1.因為橢圓兩個焦點與短軸的一個端點構(gòu)成等邊三角形.
所以,解得
所以橢圓的標(biāo)準(zhǔn)方程為. …4分
(Ⅱ)(i)設(shè)直線:與聯(lián)立并消去得:.記,,
,
. ……………5分
由A關(guān)于軸的對稱點為,得,
根據(jù)題設(shè)條件設(shè)定點為(,0),
得,即.
所以
即定點(1 , 0). ……………………………8分
(ii)由(i)中判別式,解得. 可知直線過定點 (1,0).
所以 ………10分
得, 令
記,得,當(dāng)時,.
在上為增函數(shù). 所以 ,
得.故△OA1B的面積取值范圍是. ……………13分
【解析】略
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實數(shù)根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域為的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項.
(1) 求函數(shù)的表達式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com