【題目】已知函數(shù)f(x)=
(1)當a=1,b=2時,求函數(shù)f(x)(x≠1)的值域,
(2)當a=0時,求f(x)<1時,x的取值范圍.

【答案】
(1)解:∵當a=1,b=2時,f(x)= =x﹣1+ +5,(x≠1)

當x>1時,即x﹣1>0.

∴f(x)=x﹣1+ +5≥2 +5=2+5=7

當且僅當x﹣1= ,即x=2時取等號

當x<1.

f(x)=x﹣1+ +5=5﹣[﹣(x﹣1)﹣ ]≤﹣2 +5=﹣2+5=3

當且僅當﹣(x﹣1)=﹣ ,即x=0時取等號

所以函數(shù)f(x)的值域(﹣∞,3]∪[7,+∞)


(2)解:當a=0時,f(x)= <1,即 <0,(bx﹣2)(x﹣1)<0

①當b=0時,解集為{x|x>1}…(8分)

②當b<0時,解集為{x|x>1或x< }

③當 =1,即b=2,解集為

④當 >1,即0<b<2時,解集為{x|1<x< }

⑤當0< <1,即b>2時,解集為{x| <x<1}


【解析】(1)根據(jù)分式的性質(zhì),利用分子常數(shù)化,轉(zhuǎn)化為基本不等式進行求解即可.(2)將分式不等式轉(zhuǎn)化為一元二次不等式,討論參數(shù)b的取值范圍進行求解即可.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的值域的相關知識可以得到問題的答案,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b∈R,且ab≠0,則下列結(jié)論恒成立的是( )
A.a+b≥2
B.a2+b2>2ab
C.+ ≥2
D.| + |≥2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一元二次不等式ax2+bx+c>0的解集是(﹣ ,2),則cx2+bx+a<0的解集是(
A.(﹣3,
B.(﹣∞,﹣3)∪( ,+∞)
C.(﹣2,
D.(﹣∞,﹣2)∪( ,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:
(1)函數(shù)y=tanx在定義域內(nèi)單調(diào)遞增;
(2)若α,β是銳角△ABC的內(nèi)角,則sinα>cosβ;
(3)函數(shù)y=cos( x+ )的對稱軸x= +kπ,k∈Z;
(4)函數(shù)y=sin2x的圖象向左平移 個單位,得到y(tǒng)=sin(2x+ )的圖象.
其中正確的命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 )的左右焦點分別為, ,下頂點為,直線的方程為.

(Ⅰ)求橢圓的離心率;

(Ⅱ)設為橢圓上異于其頂點的一點, 到直線的距離為,且三角形的面積為.

(1)求橢圓的方程;

(2)若斜率為的直線與橢圓相切,過焦點, 分別作 ,垂足分別為 ,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于定義域為D的函數(shù)y=f(x),若同時滿足下列條件:
①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[a,b]D,使f(x)在[a,b]上的值域為[a,b],則把y=f(x),x∈D叫閉函數(shù).
(1)求閉函數(shù)y=x3符合條件②的區(qū)間[a,b];
(2)判斷函數(shù)f(x)= x+ ,(x>0)是否為閉函數(shù)?并說明理由;
(3)已知[a,b]是正整數(shù),且定義在(1,m)的函數(shù)y=k﹣ 是閉函數(shù),求正整數(shù)m的最小值,及此時實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】通過隨機詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進行抽樣調(diào)查,得到如下的列聯(lián)表:

總計

走天橋

40

20

60

走斑馬線

20

30

50

總計

60

50

110

,算得
參照獨立性檢驗附表,得到的正確結(jié)論是(
A.有99%的把握認為“選擇過馬路的方式與性別有關”
B.有99%的把握認為“選擇過馬路的方式與性別無關”
C.在犯錯誤的概率不超過0.1%的前提下,認為“選擇過馬路的方式與性別有關”
D.在犯錯誤的概率不超過0.1%的前提下,認為“選擇過馬路的方式與性別無關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域為[0,+∞),若關于x的不等式f(x)<c的解集為(m﹣3,m+3),則實數(shù)c的值為(
A.3
B.6
C.9
D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,A、B、C的對邊分別為a、b、c,己知c﹣b=2bcosA.
(1)若a=2 ,b=3,求c;
(2)若C= ,求角B.

查看答案和解析>>

同步練習冊答案