設(shè)x,y滿足約束條件
x-y≥0
x+2y≤3
x-2y≤1
,則z=x+4y的最大值為
 
考點(diǎn):簡單線性規(guī)劃
專題:數(shù)形結(jié)合
分析:由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,由圖得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答: 解:由約束條件
x-y≥0
x+2y≤3
x-2y≤1
作出可行域如圖,

聯(lián)立
x-y=0
x+2y=3
,解得C(1,1).
化目標(biāo)函數(shù)z=x+4y為直線方程的斜截式,得y=-
1
4
x+
z
4

由圖可知,當(dāng)直線y=-
1
4
x+
z
4
過C點(diǎn)時,直線在y軸上的截距最大,z最大.
此時zmax=1+4×1=5.
故答案為:5.
點(diǎn)評:本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+a
x
,當(dāng)x∈N*時,f(x)≥f(3)恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),動直線l與橢圓C只有一個公共點(diǎn)P,且點(diǎn)P在第一象限.
(Ⅰ)已知直線l的斜率為k,用a,b,k表示點(diǎn)P的坐標(biāo);
(Ⅱ)若過原點(diǎn)O的直線l1與l垂直,證明:點(diǎn)P到直線l1的距離的最大值為a-b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

盒中共有9個球,其中有4個紅球,3個黃球和2個綠球,這些球除顏色外完全相同.
(1)從盒中一次隨機(jī)取出2個球,求取出的2個球顏色相同的概率P;
(2)從盒中一次隨機(jī)取出4個球,其中紅球、黃球、綠球的個數(shù)分別記為x1,x2,x3,隨機(jī)變量X表示x1,x2,x3中的最大數(shù),求X的概率分布和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

底面邊長為2的正三棱錐P-ABC,其表面展開圖是三角形P1P2P3,如圖,求△P1P2P3的各邊長及此三棱錐的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,已知AB=8,AD=5,
CP
=3
PD
,
AP
BP
=2,則
AB
AD
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三位同學(xué)被問到是否去過A,B,C三個城市時,
甲說:我去過的城市比乙多,但沒去過B城市;
乙說:我沒去過C城市;
丙說:我們?nèi)巳ミ^同一城市;
由此可判斷乙去過的城市為
 

查看答案和解析>>

同步練習(xí)冊答案