已知函數(shù)f(x)=logax(a>0)且a≠1),若數(shù)列2,f(a1,f(a2,…f(an),2n+4,…(n∈N*),成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)當a=2時,數(shù)列{bn}滿足b1=4,bn=4bn-1+an-1,求數(shù)列{bn}的前n項和Sn
分析:(1)利用等差數(shù)列的通項公式,可得結論;
(2)確定數(shù)列{bn}的通項公式,利用錯位相減法求和即可.
解答:解:(1)設等差數(shù)列2,f(a1),f(a2),…,f(an),2n+4(n∈N*)的公差為d,
∴2n+4=2+(n+2-1)d,∴d=2,
∴f(an)=2+(n+1-1)•2=2n+2,
an=a2n+2,(5分)
(2)∵bn=4bn-1+an-1,∴bn=4bn-1+4n,
bn
4n
=
bn-1
4n-1
+1
,∴
bn
4n
-
bn-1
4n-1
=1
,
bn
4n
=1+(n-1)×1

bn=n4n,
Sn=1•41+2•42+3•43+…+n4n,①
4Sn=1•42+2•43+3•44+…+n4n+1,②
①-②得:-3Sn=41+42+43+…+4n-n4n+1,
Sn=
(3n-1)4n+1+4
9
(12分)
點評:本題考查數(shù)列的通項與求和,考查錯位相減法的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案