分析 判斷函數(shù)f(x)為減函數(shù),結(jié)合函數(shù)奇偶性和單調(diào)性之間的關(guān)系進(jìn)行求解即可
解答 解:對[1,4]上的任意的兩個自變量x1,x2,總有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,
∴f(x)在[1,4]為減函數(shù),
∵不等式f(x+2)>f(3-2x),
∴$\left\{\begin{array}{l}{x+2<3-2x}\\{1≤x+2≤4}\\{1≤3-2x≤4}\end{array}\right.$,
解得-$\frac{1}{2}$≤x<$\frac{1}{3}$,
故不等式的解集為[-$\frac{1}{2}$,$\frac{1}{3}$),
故答案為:[-$\frac{1}{2}$,$\frac{1}{3}$)
點(diǎn)評 本題主要考查不等式的求解,根據(jù)條件判斷函數(shù)的單調(diào)性以及根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | z=-$\frac{1}{2}$-$\frac{\sqrt{3}}{2}$i | D. | z=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | $\sqrt{10}$ | C. | $\sqrt{11}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com