已知函數(shù)f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)
(ω>0)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0,
3
]
上的最大值.
分析:(Ⅰ)利用二倍角公式、兩角和差的正弦公式,化簡函數(shù)的解析式為
1
2
+sin(2ωx-
π
6
),根據(jù)周期等于π 求出ω 值.
(Ⅱ)由 2kπ+
π
2
≤2x-
π
6
≤2kπ+
2
,k∈z,求出x的范圍即得f(x)的單調(diào)遞減區(qū)間.
(Ⅲ)根據(jù) x∈[0,
3
]
,可得 2x-
π
6
 的范圍,利用正弦函數(shù)的定義域和值域求出函數(shù)f(x)在區(qū)間[0,
3
]

 的最大值.
解答:解:(Ⅰ)∵函數(shù)f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)
=sin2ωx+
3
sinωx • cosωx
 
=
1-cos2ωx
2
+
3
sin2ωx
2
=
1
2
+sin(2ωx-
π
6
),且它的周期等于π,∴
=π,
∴ω=1,∴f(x)=
1
2
+sin(2x-
π
6
).
(Ⅱ)由 2kπ+
π
2
≤2x-
π
6
≤2kπ+
2
,k∈z,可得 kπ+
π
3
≤x≤kπ+
6
,故f(x)的單調(diào)遞減區(qū)間為
[kπ+
π
3
,kπ+
6
],k∈z.
(Ⅲ)∵x∈[0,
3
]
,∴2x-
π
6
∈[-
π
6
,
6
],故當(dāng) 2x-
π
6
=
π
2
時(shí),函數(shù)f(x)在區(qū)間[0,
3
]

有最大值為
3
2
點(diǎn)評(píng):本題考查二倍角公式、兩角和差的正弦公式,三角函數(shù)的周期性和單調(diào)性,正弦函數(shù)的定義域和值域,是一道中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)
(Ⅰ)設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時(shí)有x2∈S,給出下列四個(gè)結(jié)論:
①若m=2,則l=4
②若m=-
1
2
,則
1
4
≤l≤1

③若l=
1
2
,則-
2
2
≤m≤0
④若m=1,則S={1},
其中正確的結(jié)論為
②③④
②③④

(Ⅱ)已知函數(shù)f(x)=x+
a
x
+b(x≠0)
,其中a,b∈R.若對(duì)于任意的a∈[
1
2
,2]
,f(x)≤10在x∈[
1
4
,1]
上恒成立,則b的取值范圍為
(-∞,
7
4
]
(-∞,
7
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將正奇數(shù)列{2n-1}中的所有項(xiàng)按每一行比上一行多一項(xiàng)的規(guī)則排成如下數(shù)表:
記aij是這個(gè)數(shù)表的第i行第j列的數(shù).例如a43=17
(Ⅰ)  求該數(shù)表前5行所有數(shù)之和S;
(Ⅱ)2009這個(gè)數(shù)位于第幾行第幾列?
(Ⅲ)已知函數(shù)f(x)=
3x
3n
(其中x>0),設(shè)該數(shù)表的第n行的所有數(shù)之和為bn
數(shù)列{f(bn)}的前n項(xiàng)和為Tn,求證Tn
2009
2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•開封二模)已知函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(I)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)記△ABC的內(nèi)角A、B、C所對(duì)的邊長分別為a、b、c若f(A)=
3
2
,△ABC的面積S=
3
2
,a=
3
,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•黑龍江一模)已知函數(shù)f(x)=
3
2
sinxcosx-
3
2
sin2x+
3
4

(Ⅰ) 求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)已知△ABC中,角A,B,C所對(duì)的邊長分別為a,b,c,若f(A)=0,a=
3
,b=2
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)對(duì)一個(gè)實(shí)數(shù)集合M,若存在實(shí)數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個(gè)上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項(xiàng)組成的集合的上界(其中e是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案