已知數(shù)列{an}中的相鄰兩項a2k-1,a2k(k=1,2,3…)是關(guān)于x的方程x2-(4k+2+2k)x+(2k+1)×2k+1=0的兩個根,且a2k-1≤a2k(k=1,2,3,…).
(1)求a1,a2,a3,a4的值;
(2)求數(shù)列{an}的通項an;
(3)求數(shù)列{an}的前n項的和Sn.
【答案】
分析:(1)先將方程因式分解求出方程兩個根,即求出a
2k-1與a
2k,然后分別令k=1和2,即可求出a
1,a
2,a
3,a
4的值;
(2)當(dāng)k≤4,即n≤8時,奇數(shù)項是等比數(shù)列,偶數(shù)項是等差數(shù)列,當(dāng)k≥5,即n≥9時,奇數(shù)項是等差數(shù)列,偶數(shù)項是等比數(shù)列,然后利用分段函數(shù)表示即可;
(3)當(dāng)k≤4,即n≤8時,討論n的奇偶,分別進(jìn)行求和,當(dāng)k≥5,即n≥9時,也討論n的奇偶,分別進(jìn)行求和,求和時特別注意項數(shù).
解答:解:(1)由(x-(4k+2))(x-2
k)=0可知方程兩根為4k+2,2
k k=1,a
1=2,a
2=6 k=2,a
3=4,a
4=10
(2)當(dāng)k≤4,即n≤8時,
當(dāng)k≥5,即n≥9時,
(3)當(dāng)k≤4,即n≤8時,
,
。┊(dāng)n=2k,k∈N
•為偶數(shù)時,s
n=
=2
k+1-2+2k
2+4k=
ⅱ)當(dāng)n=2k-1,k∈N
•為奇數(shù)時,s
n=
+
=
當(dāng)k≥5,即n≥9時,
。┊(dāng)n=2k,k∈N
*為偶數(shù)時,s
n=
=2
k+1-2+2k
2+4k=
ⅱ)當(dāng)n=2k-1,k∈N
•為奇數(shù)時,s
n=
+2n+4=
點評:本題主要考查了解方程,以及等差數(shù)列和等比數(shù)列的通項公式和求和,同時考查了計算能力,屬于綜合題,有一定的難度.