已知拋物線C:x2=4y的焦點(diǎn)為F,直線l過(guò)點(diǎn)F交拋物線C于A、B兩點(diǎn).
(Ⅰ)設(shè)A(x1,y1),B(x2,y2),求的取值范圍;
(Ⅱ)是否存在定點(diǎn)Q,使得無(wú)論AB怎樣運(yùn)動(dòng)都有∠AQF=∠BQF?證明你的結(jié)論.
【答案】分析:(Ⅰ)設(shè)直線l方程為y=kx+1,將直線的方程代入拋物線的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用基本不等式即可求得求的取值范圍,從而解決問(wèn)題.
(Ⅱ)對(duì)于存在性問(wèn)題,可先假設(shè)存在,即假設(shè)存在定點(diǎn)Q,使得無(wú)論AB怎樣運(yùn)動(dòng)都有∠AQF=∠BQF,再利用斜率公式結(jié)合推理,求出Q點(diǎn),若出現(xiàn)矛盾,則說(shuō)明假設(shè)不成立,即不存在;否則存在.
解答:解:(Ⅰ)設(shè)直線l方程為y=kx+1代入x2=4y得x2-4kx-4=0
設(shè)A(x1,y1)、B(x2,y2),則x1+x2=4k,x1x2=-4
所以的取值范圍是[2,+∞).(7分)
(Ⅱ)當(dāng)l平行于x軸時(shí),要使∠AQF=∠BQF,則Q必在y軸上.
設(shè)點(diǎn)Q(0,b),由題意得

,∴
∴Q(0,-1)
∵以上每步可逆,
∴存在定點(diǎn)Q(0,-1),使得∠AQF=∠BQF(15分)
點(diǎn)評(píng):本題主要考查拋物線的標(biāo)準(zhǔn)方程和直線與拋物線的聯(lián)立問(wèn)題.直線與圓錐曲線的聯(lián)立是高考考查圓錐曲線的一種典型題型,一般作為壓軸題出現(xiàn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2py(p>0),其焦點(diǎn)F到準(zhǔn)線的距離為
12

(1)試求拋物線C的方程;
(2)設(shè)拋物線C上一點(diǎn)P的橫坐標(biāo)為t(t>0),過(guò)P的直線交C于另一點(diǎn)Q,交x軸于M,過(guò)點(diǎn)Q作PQ的垂線交C于另一點(diǎn)N,若MN是C的切線,求t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=
12
y
和定點(diǎn)P(1,2),A、B為拋物線C上的兩個(gè)動(dòng)點(diǎn),且直線PA和PB的斜率為非零的互為相反數(shù).
(I)求證:直線AB的斜率是定值;
(II)若拋物線C在A、B兩點(diǎn)處的切線相交于點(diǎn)M,求M的軌跡方程;
(III)若A′與A關(guān)于y軸成軸對(duì)稱(chēng),求直線A′B與y軸交點(diǎn)P的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2py,過(guò)點(diǎn)A(0,4)的直線l交拋物線C于M,N兩點(diǎn),且OM⊥ON.
(1)求拋物線C的方程;
(2)過(guò)點(diǎn)N作y軸的平行線與直線y=-4相交于點(diǎn)Q,若△MNQ是等腰三角形,求直線MN的方程.K.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=ay(a>0),斜率為k的直線l經(jīng)過(guò)拋物線的焦點(diǎn)F,交拋物線于A,B兩點(diǎn),且拋物線上一點(diǎn)M(2
2
 , m) (m>1)
到點(diǎn)F的距離是3.
(Ⅰ)求a的值;
(Ⅱ)若k>0,且
AF
=3
FB
,求k的值.
(Ⅲ)過(guò)A,B兩點(diǎn)分別作拋物線的切線,這兩條切線的交點(diǎn)為點(diǎn)Q,求證:
AB
 • 
FQ
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:x2=2my(m>0)和直線l:y=x-m沒(méi)有公共點(diǎn)(其中m為常數(shù)).動(dòng)點(diǎn)P是直線l上的任意一點(diǎn),過(guò)P點(diǎn)引拋物線C的兩條切線,切點(diǎn)分別為M、N,且直線MN恒過(guò)點(diǎn)Q(1,1).
(1)求拋物線C的方程;
(2)已知O點(diǎn)為原點(diǎn),連接PQ交拋物線C于A、B兩點(diǎn),求
|PA|
|
PB|
-
|
QA|
|
QB|
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案