精英家教網 > 高中數學 > 題目詳情
函數y=
x2-1
+lg(x-2)
的定義域是
(2,+∞)
(2,+∞)
分析:函數的定義域,就是使函數解析式有意義的自變量的取值范圍,該題中既有根式,又有對數式,定義域應為使根式和對數式都有意義的x的集合.
解答:解:要使原函數有意義,則
x2-1≥0      ①
x-2>0       ②

 解①得:x≤-1或x≥1,解②得x>2,所以原函數的定義域為(2,+∞).
故答案為(2,+∞).
點評:本題考查了函數定義域的求法,解答的關鍵是要對兩部分限制的x的集合取交集.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網設點P(m,n)在圓x2+y2=2上,l是過點P的圓的切線,切線l與函數y=x2+x+k(k∈R)的圖象交于A,B兩點,點O是坐標原點.
(1)當k=-2,m=-1,n=-1時,判斷△OAB的形狀;
(2)△OAB是以AB為底的等腰三角形;
①試求出P點縱坐標n滿足的等量關系;
②若將①中的等量關系右邊化為零,左邊關于n的代數式可表為(n+1)2(ax2+bx+c)的形式,且滿足條件的等腰三角形有3個,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,某小區(qū)有一邊長為2(單位:百米)的正方形地塊OABC,其中OAE是一個游泳池,計劃在地塊OABC內修一條與池邊AE相切的直路l(寬度不計),切點為M,并把該地塊分為兩部分.現以點O為坐標原點,以線段OC所在直線為x軸,建立平面直角坐標系,若池邊AE滿足函數y=-x2+2(0≤x≤
2
)的圖象,且點M到邊OA距離為t(
2
3
≤t≤
4
3
)

(1)當t=
2
3
時,求直路l所在的直線方程;
(2)當t為何值時,地塊OABC在直路l不含泳池那側的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•青州市模擬)給出下列六個命題:
①函數f(x)=lnx-2+x在區(qū)間(1,e)上存在零點;
②若f′(x0)=0,則函數y=f(x)在x=x0處取得極值;
③若m≥-1,則函數y=log
1
2
(x2-2x-m)
的值域為R;
④“a=1”是“函數f(x)=
a-ex
1+aex
在定義域上是奇函數”的充分不必要條件.
⑤函數y=f(1+x)的圖象與函數y=f(l-x)的圖象關于y軸對稱;
⑥滿足條件AC=
3
,∠B=60°
,AB=1的三角形△ABC有兩個.
其中正確命題的個數是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數y=x2-
m
n
x+
1
n
的圖象在點M(0,
1
n
)
處的切線l與圓C:x2+y2=1相交,則點P(m,n)與圓C的位置關系是( 。
A、圓內B、圓外
C、圓上D、圓內或圓外

查看答案和解析>>

科目:高中數學 來源: 題型:

給出下列五個命題:
①若f′(x0)=0,則函數y=f(x)在x=x0處取得極值;
②若m≥-1,則函數f(x)=log
1
2
(x2-2x-m)
的值域為R;
③“a=1”是“函數f(x)=
a-ex
1+aex
在定義域上是奇函數”的充分不必要條件.
④函數y=f(1+x)的圖象與函數y=f(l-x)的圖象關于y軸對稱;
⑤“x1>1且x2>2”是“x1+x2>3且x1x2>2”的充要條件;
其中正確命題的個數是
②③
②③

查看答案和解析>>

同步練習冊答案