(2012•湖北)傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點(diǎn)或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):
將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列{bn},可以推測:
(Ⅰ)b2012是數(shù)列{an}中的第
5030
5030
項(xiàng);
(Ⅱ)b2k-1=
5k(5k-1)
2
5k(5k-1)
2
.(用k表示)
分析:(Ⅰ)由題設(shè)條件及圖可得出an+1=an+(n+1),由此遞推式可以得出數(shù)列{an}的通項(xiàng)為,an=
1
2
n(n+1),由此可列舉出三角形數(shù)1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…
,從而可歸納出可被5整除的三角形數(shù)每五個(gè)數(shù)中出現(xiàn)兩個(gè),即每五個(gè)數(shù)分為一組,則該組的后兩個(gè)數(shù)可被5整除,由此規(guī)律即可求出b2012在數(shù)列{an}中的位置;
(II)由(I)中的結(jié)論即可得出b2k-1
1
2
(5k-1)(5k-1+1)=
5k(5k-1)
2
解答:解:(I)由題設(shè)條件可以歸納出an+1=an+(n+1),故an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1=n+(n-1)+…+2+1=
1
2
n(n+1)
由此知,三角數(shù)依次為1,3,6,10,15,21,28,36,45,55,66,78,91,105,120,…
由此知可被5整除的三角形數(shù)每五個(gè)數(shù)中出現(xiàn)兩個(gè),即每五個(gè)數(shù)分為一組,則該組的后兩個(gè)數(shù)可被5整除,
由于b2012是第2012個(gè)可被5整除的數(shù),故它出現(xiàn)在數(shù)列{an}按五個(gè)一段分組的第1006組的最后一個(gè)數(shù),由此知,b2012是數(shù)列{an}中的第1006×5=5030個(gè)數(shù)
故答案為5030
(II)由于2k-1是奇數(shù),由(I)知,第2k-1個(gè)被5整除的數(shù)出現(xiàn)在第k組倒數(shù)第二個(gè),故它是數(shù)列{an}中的第k×5-1=5k-1項(xiàng),所以b2k-1
1
2
(5k-1)(5k-1+1)=
5k(5k-1)
2

故答案為
5k(5k-1)
2
點(diǎn)評(píng):本題考查數(shù)列的遞推關(guān)系,數(shù)列的表示及歸納推理,解題的關(guān)鍵是由題設(shè)得出相鄰兩個(gè)三角形數(shù)的遞推關(guān)系,由此列舉出三角形數(shù),得出結(jié)論“被5整除的三角形數(shù)每五個(gè)數(shù)中出現(xiàn)兩個(gè),即每五個(gè)數(shù)分為一組,則該組的后兩個(gè)數(shù)可被5整除”,本題綜合性強(qiáng),有一定的探究性,是高考的重點(diǎn)題型,解答時(shí)要注意總結(jié)其中的規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北)根據(jù)以往的經(jīng)驗(yàn),某工程施工期間的將數(shù)量X(單位:mm)對(duì)工期的影響如下表:
降水量X X<300 300≤X<700 700≤X<900 X≥900
工期延誤天數(shù)Y 0 2 6 10
歷年氣象資料表明,該工程施工期間降水量X小于300,700,900的概率分別為0.3,0.7,0.9,求:
(I)工期延誤天數(shù)Y的均值與方差;
(Ⅱ)在降水量X至少是300的條件下,工期延誤不超過6天的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北)設(shè)a,b,c,x,y,z是正數(shù),且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,則
a+b+c
x+y+z
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖南模擬)傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上畫點(diǎn)或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

將三角形數(shù)1,3,6,10,…記為數(shù)列{an},將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列{bn}.可以推測:
(Ⅰ)b3是數(shù)列{an}中的第
9
9
項(xiàng);
(Ⅱ)b2k=
5k(5k+1)
2
5k(5k+1)
2
(用k表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012年高考(湖北文))傳說古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常在沙灘上面畫點(diǎn)或用小石子表示數(shù).他們研究過如圖所示的三角形數(shù):

將三角形數(shù)1,3, 6,10,記為數(shù)列,將可被5整除的三角形數(shù)按從小到大的順序組成一個(gè)新數(shù)列,可以推測:

(Ⅰ)是數(shù)列中的第______項(xiàng);     (Ⅱ)______.(用表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案