已知直線l1為曲線yx2x-2在點(diǎn)(1,0)處的切線,l2為該曲線的另一條切線,且l1l2.

(1)求直線l2的方程;

(2)求由直線l1,l2x軸所圍成的三角形面積.

解:(1)由題意知y′=2x+1,直線l1的斜率k=2×1+1=3,所以直線l1的方程為y=3x-3,設(shè)直線l2過(guò)曲線yx2x-2上的點(diǎn)B(b,b2b-2),則l2的方程為y=(2b+1)xb2-2,由于l1l2,則2b+1=-,b=-,故l2的方程為y=-x-.

(2)l1l2的交點(diǎn)坐標(biāo)為(,-), l1,l2x軸的交點(diǎn)坐標(biāo)分別為(1,0),(-,0),

所以所求三角形面積S=××|-|=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1為曲線y=x2+x-2在點(diǎn)(1,0)處的切線,l2為該曲線的另一條切線,且l1⊥l2
(Ⅰ)求直線l2的方程;
(Ⅱ)求由直線l1、l2和x軸所圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1為曲線y=x2+x-2在點(diǎn)(0,-2)處的切線,l2為該曲線的另一條切線,且l1⊥l2,則直線l2的方程為:
x+y+3=0
x+y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l1為曲線y=x2在點(diǎn)(1,1)處的切線,l2為該曲線的另一條切線,且l1⊥l2
(1)求直線l1與l2的方程;
(2)求直線l1,l2與x軸所圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年浙江省高二下學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

已知直線l1為曲線y=x2+x-2在點(diǎn)(1,0)處的切線,l2為該曲線的另一條切線,且l1⊥l2.

(1)求直線l2的方程;

(2)求由直線l1,l2和x軸所圍成的三角形面積.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:貴州 題型:解答題

已知直線l1為曲線y=x2+x-2在點(diǎn)(1,0)處的切線,l2為該曲線的另一條切線,且l1⊥l2
(Ⅰ)求直線l2的方程;
(Ⅱ)求由直線l1、l2和x軸所圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案